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H I G H L I G H T S

• Prenatal MAM exposure affects CB1 receptor in the prefrontal cortex of adult rats.

• Peripubertal cannabidiol treatment prevents behavioral and molecular alterations in MAM rats at adulthood.

• Peripubertal cannabidiol treatment does not negatively affect control animals.
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A B S T R A C T

In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the anti-
mitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral al-
terations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object
recognition test, respectively. At the molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and
protein expression, which might be due to reduction in DNA methylation at the gene promoter in the prefrontal
cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM
rats. Both the schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were re-
versed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid can-
nabidiol (30mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist
AM251 (0.5 mg/kg/day), but not with haloperidol (0.6mg/kg/day). These results suggest that early treatment
with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the
PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult.
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1. Introduction

Schizophrenia (SCZ) is now well recognized as a developmental
disease. The belief is that anomalies in neurodevelopment during early-
life may affect brain functions and physiology resulting in the emer-
gence of psychosis later in life, usually during early adulthood
(Marenco and Weinberger, 2000; Millan et al., 2016). Early treatment
during the prodromal phase of the disease has shown to reduce the risk
of progression to first-episode psychosis in patients (Sommer et al.,
2016); as well as to prevent behavioral and structural abnormalities in
different neurodevelopmental animal models of SCZ (Gomes et al.,
2016). However, the development of preventive strategies in the field of
psychosis raises several clinical and ethical problems, since only 1/3 of
individuals with prodrome symptoms develop SCZ (Piras et al., 2014).
Therefore, preventive intervention should both reduce transition to SCZ
and be safe for individuals who do not convert to psychosis (Mokhtari
and Rajarethinam, 2013).

The methylazoxymethanol acetate (MAM) rat model, which in-
volves prenatal exposure to methylazoxymethanol acetate, displays
many SCZ-relevant functional and neuropathological deficits at adult-
hood (Lodge and Grace, 2009; Micale et al., 2013). Interestingly, these
deficits can be reversed by prepubertal pharmacological (Du and Grace,
2013, 2016) or adolescent non-pharmacological (i.e., environmental
enrichment strategy) interventions (Bator et al., 2018) to some degree.
Therefore, the MAM model is an invaluable tool that reproduces the
human condition in terms of construct, face and predictive validity to
investigate potential antipsychotic compounds.

The endocannabinoid system (ECS) encompasses a large group of
endogenous molecules including the two major lipid transmitters ana-
ndamide (AEA), 2-arachidonoylglycerol (2-AG) and the en-
docannabinoid-related molecules N-palmitoylethanolamide (PEA) and
N-oleoylethanolamide (OEA), the class of enzymes deputed to their
biosynthesis (nape-pld, gde-1, abdh4 and ptpn22 for AEA; daglα and
daglβ for 2-AG) and degradation (faah for AEA; abdh6, abdh12 and
magl for 2-AG) and at least two G-protein-coupled receptors named
cannabinoid receptors of type 1 (CB1), type 2 (CB2) and transient re-
ceptor potential of vanilloid type-1 (TRPV1) channel (Iannotti et al.,
2016).

Increasing evidence suggests that disturbances in ECS activity in the
brain (in terms of CB1 dysregulation and/or altered endocannabinoids
levels) are associated with the development of SCZ (Ruggiero et al.,
2017; Saito et al., 2013). Pharmacological modulation of the ECS has
therefore been viewed as a promising therapeutic approach (Kucerova
et al., 2014). However, the majority of work linking the ECS with SCZ
originates from epidemiological data, which can only suggest a non-
causal association between early cannabis abuse and the development of
psychiatric conditions later in life, including SCZ (Arseneault et al.,
2002; Koethe et al., 2006). Currently, little is known about the ther-
apeutic effect of early intervention with cannabinoids.

To this purpose, we investigated whether the development of SCZ-
like symptoms, as induced by MAM (Lodge and Grace, 2009; Micale
et al., 2013), could be paralleled by changes in ECS elements of specific
brain regions involved in SCZ symptoms (prefrontal cortex–PFC, hip-
pocampus–HIP and nucleus accumbens–NAc) (Lodge and Grace, 2009).
Furthermore, we also attempted to reverse the SCZ-like abnormalities
in the MAM model by peripubertal treatment with: 1) the non-psy-
chotropic cannabinoid cannabidiol (CBD) (Campos et al., 2017;
Osborne et al., 2017b), 2) the CB1 antagonist/inverse agonist AM251
(Kucerova et al., 2014; Roser et al., 2010; Roser and Haussleiter, 2012),
and 3) first-generation antipsychotic haloperidol (HAL), used here as
positive control (Valenti et al., 2011).

2. Material and methods

2.1. Animals and MAM model

Pregnant Sprague-Dawley rats were obtained from Charles River
(Germany) at gestational day (GD) 13 and housed individually. They
were randomly assigned to experimental groups and injected in-
traperitoneally (i.p.) with methylazoxymethanol acetate (MAM: 22mg/
kg) or vehicle (CNT: 0.9% NaCl) on GD 17, as previously described
(D'Addario et al., 2017; Ruda-Kucerova et al., 2017a, 2017b; Večeřa
et al., 2018). The mothers were regularly weighed and no differences
were observed between the two experimental groups. No cross-fostering
was used in this study, since in previous studies it did not impact the
MAM phenotype (Moore et al., 2006). Newborn litters found up to 5
p.m. were considered to be born on that day (postnatal day 0=PND 0).
At birth, no difference was found in pregnancy length
(CNT=21.40 ± 0.24; MAM=21.67 ± 0.21; t= 0.8301, p > 0.05),
total number of pups per litter (CNT=9.6 ± 0.5; MAM=11.5 ±
0.9; t= 1.598, p > 0.05) or eye opening time (MAM=16.40 ±
0.24; CNT=16.67 ± 0.21; t= 0.7401, p > 0.05). Male pups were
weaned on PND 22 and housed in groups of 2–3 with littermates until
adolescent (PND 35–40) or adult (PND 100), at which time they were
used for behavioral and neurochemical experiments, with food and
water available ad libitum and under constant environmental condi-
tions: relative humidity 50–60%, temperature 23 °C ± 1 °C, 12-h light-
dark cycle (lights on at 6 a.m.).

2.2. Drugs and experimental design

All compounds were administered i.p. in a volume of 5ml/kg of
body weight. The CB1 antagonist/inverse agonist AM251 (Sigma-
Aldrich) was dissolved in dimethylsulfoxide (DMSO), Tween80 and
saline (1:1:8). The non-psychotropic cannabinoid cannabidiol (CBD)
kindly provided by Prof. Raphael Mechoulam (Hebrew University,
Jerusalem, Israel) was dissolved in Tween80 (2%) and saline (98%).
The typical antipsychotic haloperidol (HAL, Haloperidol-Richter®,
Czech Republic) used here as positive control was dissolved in saline.
Three groups of control animals were injected i.p. with AM251, CBD or
HAL vehicle (VHC), respectively. As similar results were obtained from
these three control groups, VHC data were pooled. As described in
Fig. 1., from PND 19 to PND 39 [the period prior to puberty defined as
PND 43.6 + 1 in Sprague-Dawley rats based on previous observations
of balano-preputial separation and increases in circulating androgens
(Clark, 1999; Korenbrot et al., 1977)] different groups of rats
(n= 12–15) were treated i.p. with CBD (10 or 30mg/kg/day), AM251
(0.5mg/kg/day), HAL (0.6mg/kg/day) or VHC, based on previous
results (Gomes et al., 2015; Valenti et al., 2011; Zamberletti et al.,
2012a, 2012b). The drug treatment period (PND 19 - PND 39) in the
rats was carried out at the equivalent time of the childhood/periado-
lescent phase in humans (Andersen, 2003). To avoid litter effects each
experimental group consisted of animals chosen randomly from dif-
ferent litters (at least four MAM-exposed litters and four vehicle-ex-
posed litters). The experimental design resulted in 10 final groups: (1)
offspring of control dams administered vehicle (CNT/VHC), (2) off-
spring of control dams administered CBD 10mg/kg (CNT/CBD10), (3)
offspring of control dams administered CBD 30mg/kg (CNT/CBD30),
(4) offspring of control dams administered AM251 (CNT/AM251), (5)
offspring of control dams administered HAL (CNT/HAL), (6) offspring
of MAM dams administered vehicle (MAM/VHC), (7) offspring of MAM
dams administered CBD 10mg/kg (MAM/CBD10), (8) offspring of
MAM dams administered CBD 30mg/kg (MAM/CBD30), (9) offspring
of MAM dams administered AM251 (MAM/AM251) and (10) offspring
of MAM dams administered HAL (MAM/HAL). As adults (from PND
100) the animals were submitted to a battery of behavioral tests with 5
days in between two consecutive tests in the following order, as pre-
viously described (Terzian et al., 2011): a) exploration-based approach
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tests: open field (OF) test and novel object recognition (NOR) test; b)
social approach: social interaction (SI) test. Immediately after the SI,
the rats were decapitated in short aether anaesthesia and their brains
were removed. The PFC [(corresponding to an area that included the
rostral pole of the brain, and delimited medially by the interhemi-
spheric fissure, laterally by the corpus callosum and caudally extended
to AP +2.7 according to Paxinos and Watson (1998)], the HIP (dorsal
and ventral) and the NAc (core and shell) were obtained by regional
dissection on ice, immediately frozen on liquid nitrogen and stored at
−80 °C until analysis. For binding assay coronal sections (20mm-thick)
were cut on a cryostat, mounted on gelatin-coated slides and stored at
−80 °C until processing.

2.3. Behavioral testing

2.3.1. Spontaneous locomotor activity in the open field (OF) test
Exploratory activity was evaluated in moderately illuminated (80

lx) cubic metal arena (60× 60×60 cm), as previously described
(Drago et al., 2001; Tamburella et al., 2009). Animals were placed
gently in the center of the arena and allowed to explore. The horizontal
(number of squares crossed with all paws) and the vertical (number of
rearing episodes) exploratory activity was recorded for 30min and
scored offline by two observers blinded to the treatment groups. The
arena was cleaned with 0.1% acetic acid and dried after each trial.

2.3.2. Social interaction (SI) test
The test was carried out in a moderately illuminated room (120 lx),

as previously described (Zamberletti et al., 2012b). Each animal was
allowed to freely explore an unfamiliar congener in a metal arena
(60× 60×60 cm) for 10min. The arena was cleaned with 0.1% acetic
acid and dried after each trial. Social behaviors were defined as sniffing,
following, grooming, mounting, and nosing. The whole testing phase
was recorded and analyzed by two observers blinded to the treatment
groups. We recorded the time spent in social behaviors and the number
of interactions.

2.3.3. Novel object recognition (NOR) test
The experimental apparatus used for the NOR test was an arena

(43× 43×32 cm), made of plexiglass, placed in a moderately illumi-
nated room (120 lx). As previously described (Zamberletti et al.,
2012b), each animal was placed in the arena and allowed to explore
two identical, previously unseen objects for 5min (familiarization
phase). After an inter-trial interval of 3min, one of the two familiar
objects was replaced by a novel, previously unseen object and rats were
returned to the arena for the 5min test phase. This phase was recorded
and analyzed separately by two observers blinded to the treatment
groups. The time spent exploring the familiar object (Tf) and the novel

object (Tn) were scored. The discrimination index (DI) was calculated as
DI=(Tn-Tf)⁄(Tn+ Tf). The arena and all objects were cleaned with
0.1% acetic acid and dried after each trial.

2.4. Biochemical methods

2.4.1. Extraction, purification and quantification of endocannabinoids and
endocannabinoid-related compounds

The endocannabinoids anandamide (AEA) and 2-arachidonoylgly-
cerol (2-AG), and endocannabinoid-related molecules N-palmitoy-
lethanolamide (PEA) and N-oleoylethanolamide (OEA) were extracted
from tissues and then purified and quantified as described elsewhere
(Matias et al., 2008). First, tissues were dounce-homogenized and ex-
tracted with chloroform/methanol/Tris-HCl 50mM, pH 7.5 (2:1:1, v/v)
containing internal deuterated standards for AEA, 2-AG, PEA and OEA
quantification by isotope dilution (5 pmol of [2H]8AEA, 50 pmol of
[2H]52-AG, [2H]4 PEA, [2H]2OEA (Cayman Chemicals, MI, USA). The
lipid-containing organic phase was dried down, weighed and pre-pur-
ified by open bed chromatography on silica gel. Fractions were ob-
tained by eluting the column with 99:1, 90:10 and 50:50 (v/v)
chloroform/methanol. The 90:10 fraction was used for AEA, 2-AG, PEA
and OEA quantification by liquid chromatography-atmospheric pres-
sure chemical ionization-mass spectrometry (LC-APCI-MS), as pre-
viously described and using selected ion monitoring at M+1 values for
the four compounds and their deuterated homologues, as previously
described (Bisogno et al., 2008; Di Marzo et al., 2001; Micale et al.,
2009).

2.4.2. Real-time qPCR (RT-qPCR)
Total RNA was isolated from native tissues by use of the PureLink®

RNA Mini Kit (Cat. N.: 12183018A; Thermo Fisher Scientific, Milan,
Italy) following the manufacturer's instruction, and then quantified by
spectrophotometric analysis. The purified mRNA was reverse-tran-
scribed by use of iScript reverse transcriptase enzyme (Cat. N.:
1708840; Biorad, Milan, Italy). Quantitative real-time PCR was carried
out in CFX384 real-time PCR detection system (Bio-Rad, Milan, Italy)
with specific primers by the use of Advance Universal SYBR Green
Supermix (Cat. N.: 1725270 Bio-Rad, Milan, Italy). Samples were am-
plified simultaneously in quadruplicate in one-assay run with a non-
template control blank for each primer pair to control for contamina-
tion or primer-dimers formation, and the ct (cycle threshold) value for
each experimental group was determined. The housekeeping genes (the
ribosomal protein S16 and/or HPRT) have been used as an internal
control to normalize the ct values, using the 2−ΔΔct formula (D'Addario
et al., 2017; Iannotti et al., 2013). The primers used for PCR amplifi-
cation are reported in supplementary table S1.

Fig. 1. Experimental design used to investigate the effects of peripubertal cannabidiol (CBD) treatment on offspring in MAM rat model of schizophrenia. Pregnant
rats were exposed to methylazoxymethanol acetate (MAM; 22mg/kg; i.p.) or saline (CNT; 1ml/kg; i.p.) on gestational day (GD) 17. From PND 19 to PND 39 the
resulting male offspring were subjected to repeated treatment with vehicles (VHC), cannabidiol (CBD: 10 or 30mg/kg/day; i.p.), AM251 (0.5 mg/kg/day; i.p.) or
haloperidol (HAL: 0.6 mg/kg/day; i.p.). Behavioral tests of the offspring were conducted at adulthood from PND 100. After completion, the neurochemical analyses
were performed.

T. Stark et al. Neuropharmacology 146 (2019) 212–221

214



2.4.3. Western blotting analysis
The cerebral areas of interest (PFC, HIP and NAc) were dissected

from whole rat brains and washed twice in cold PBS (without Ca2+ and
Mg2+, pH 7.4) and homogenized as previously described (Navarria
et al., 2014). Lysates were then centrifuged for 15min at 13000×g at
4 °C, and the supernatants transferred into clear tubes and quantified by
DC Protein Assay (Bio-Rad, Segrate MI, Italy). Subsequently the samples
(60–80 μg of total protein) were boiled for 5min in Laemmli SDS
loading buffer and loaded on 8–10% SDS-polyacrylamide gel electro-
phoresis and then transferred to a PVDF membrane. Membranes were
incubated overnight at 4 °C with the following antibody: rabbit poly-
clonal anti-CB1 Receptor Antibody (Y080037) Applied Biological Ma-
terials Inc. (CANADA). The mouse monoclonal anti-tubulin clone B-5-1-
2 (dilution 1:5000; Sigma–Aldrich, MI Italy) antibody was used to
check for equal protein loading. Reactive bands were detected by
chemiluminescence (ECL or ECL-plus; Perkin-Elmer). Images were ac-
quired and analyzed on a Chemi-Doc station with Quantity-one soft-
ware (Bio-Rad, Segrate MI, Italy) (Navarria et al., 2014; Panza et al.,
2016). See supplementary Fig. S5 for uncropped images of key im-
munoblot data presented in this study.

2.4.4. Analysis of DNA methylation
Methylation status of CNR1 promoter was determined using pyr-

osequencing of bisulfite converted DNA. After DNA extraction, 0.5 μg of
DNA from each sample was treated with bisulfite, using the EZ DNA
Methylation-Gold™ Kit (Zymo Research, Orange, CA, USA). CNR1 was
analyzed in clinical samples with PM00122031 (Qiagen, Hilden,
Germany) and in rat brain tissues using the following primers: forward:
5′-GGAAGAGAGTAGGAAGATGATAG-3′; reverse: 5′-biotin-TTCTAC
CAA AACTAATATACCTAACACC-3′; and sequencing: 5′-AGAGAGTAG
GAAG ATGATAGT-3′. Bisulfite treated DNA was amplified by PyroMark
PCR Kit (Qiagen, Hilden, Germany) in accordance with the manufac-
turer's protocol. PCR conditions were as follows: 95 °C for 15 min,
followed by 45 cycles of 94 °C for 30 s, 56 °C for 30 s, 72 °C for 30 s,
and, finally, 72 °C for 10 min. PCR products were verified by agarose
electrophoresis. Pyrosequencing methylation analysis was conducted
using the PyroMark Q24 (Qiagen). The level of methylation was ana-
lyzed using PyroMark Q24 Software (Qiagen, Hilden, Germany), which
calculates the methylation percentage (mC/(mC + C)) for each CpG
site, allowing quantitative comparisons (mC is methylated cytosine, C is
unmethylated cytosine) (D'Addario et al., 2017).

2.4.5. Cannabinoid receptor binding assays
Rat brain cortex was resuspended in 2mM Tris–EDTA, 320mM

sucrose, 5 mM MgCl2 (pH 7.4), then homogenized in a Potter homo-
genizer and centrifuged twice at 1000×g (10min), and the pellet was
discharged. The supernatant was centrifuged at 15000×g (20min), and
the pellet was resuspended in assay buffer (50mM Tris–HCl, 3 mM
MgCl2, pH 7.4), and the Bradford protein assay to measure the con-
centration of the sample protein was performed. These membrane
fractions were used in rapid filtration assays with radiolabel agonist
([3H]CP-55,940; Perkin Elmer Life Sciences, Boston, Ma, U.S.A.), at

37 °C with incubation time of 60min. At the beginning we performed
binding assays with [3H]-CP-55,940 at different concentrations
(0.1–4 nM) to create the nonlinear graph of specific binding, and to
calculate the Kd, using the Prism 4 program (GraphPAD Software for
Science, San Diego, CA), value necessary for subsequent evaluation of
Ki. Then in all binding experiments, nonspecific binding was de-
termined in the presence of 10 μM “cold” agonist (CP-55,940; Cayman
Chemicals, Ann Arbor, Mi, U.S.A) that was tested by adding directly to
the incubation medium during a preincubation time of 15min at room
temperature (Bari et al., 2013).

2.5. Statistical analysis

The results are presented as the group mean ± SEM. Behavioral
data were first tested for normality distribution using the Shapiro-Wilk
test. As normality tests have little power to detect non-Gaussian dis-
tributions with small data sets, we did not explicitly test for the nor-
mality of our biochemical data sets. Data were analyzed using two-way
ANOVA (factor 1: MAM; factor 2: peripubertal treatment) followed by
post-hoc Fisher's LSD if appropriate. Unpaired t-test was used to analyze
independent data (CNT vs MAM). Statistical evaluations were per-
formed using specialized software (Graph-Pad Prism 6.0). Statistical
significance was accepted at p < 0.05. Detailed statistical metho-
dology and results are provided in supplementary tables S2 and S3.

3. Results

3.1. Behavioral phenotype

The influence of peripubertal treatment, alone or combined with
prenatal MAM exposure, on behavioral performance in the SItest is
depicted in Fig. 2A-B. Two-way ANOVA revealed for the time of in-
teraction a main effect of MAM (F1,79= 17.54, p < 0.001), treatment
(F4,79= 9.049, p < 0.001) and a significant MAM× treatment inter-
action (F4,79= 12.37, p < 0.001). Post-hoc analysis revealed that
MAM/VHC group spent less time in social interaction compared to
CNT/VHC rats (p < 0.001), indicating impaired social behavior. In-
traperitoneal treatment with CBD 30mg/kg (CBD30) and AM251, but
neither CBD 10mg/kg (CBD10) nor HAL, improved social performance
in the MAM group as compared to the MAM/VHC group (p < 0.001).
However, in CNT groups both AM251 and HAL reduced the social ac-
tivity (p < 0.05, p < 0.001), while CBD did not (Fig. 2A). Neither
prenatal MAM exposure (F1,79= 3.514, p > 0.05) nor treatment
(F4,79= 0.3396, p > 0.05) affected the number of interaction
(MAM× treatment interaction F4,79= 0.5328, p > 0.05), as index of
locomotor activity (Fig. 2B).

In the rats tested in the NOR test (Fig. 3A-B), two-way ANOVA
showed a main effect of MAM (F1,116= 24.28, p < 0.001), a sig-
nificant MAM× treatment interaction (F4,116= 2.757, p < 0.05) but
not a main effect of treatment (F4,116= 1.221, p > 0.05) for the dis-
crimination index. Post-hoc analysis revealed that prenatal MAM ex-
posure affected the recognition memory as demonstrated by a
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significant reduction (p < 0.01) in the discrimination index during the
test phase, which was reversed by CBD30 (p < 0.01; Fig. 3A). How-
ever, no difference was found in the total exploration time among the
groups (two-way ANOVA, factor MAM: F1,116= 3.002, p > 0.05;
factor treatment: F4,116= 0.2028, p > 0.05; MAM× treatment inter-
action: F4,116= 0.4640, p > 0.05; Fig. 3B), as well as in the time spent
to explore the two identical object in the familiarization phase (see
supplementary data and supplementary Fig. S1).

In addition, neither prenatal MAM exposure nor peripubertal
treatments affected the spontaneous horizontal (number of crossings,
factor MAM: F1,82= 3.348, p > 0.05; factor treatment: F4,82= 1.597,
p > 0.05; MAM× treatment interaction: F4,82= 0.5224, p > 0.05;
Fig. 4A) or vertical (number of rearings, factor MAM: F1,82= 0.1926,
p > 0.05; factor treatment: F4,82= 1.890, p > 0.05; MAM× treat-
ment interaction: F4,82= 0.8153, p > 0.05; Fig. 4B) locomotor activity
in a novel environment at adulthood.

3.2. Biochemical analyses

3.2.1. Cannabinoid CB1 receptors in the PFC of adult MAM rats
Among the brain regions (PFC, HIP and NAc) in our analysis CB1

receptor in the PFC was the most significant canonical target affected
(Fig. 5A–C). Consistent with the increase of CB1 mRNA expression
(p < 0.01 vs CNT/VHC) (two-way ANOVA, factor MAM:
F1,30= 0.01859, p > 0.05; factor treatment: F3,30= 2.610, p > 0.05;
factor MAM× treatment interaction: F3,30= 4.658, p < 0.01,
Fig. 5B), we observed a significant reduction in DNA methylation of the
CB1 gene (CNR1) promoter in the 5 CpGs average of MAM/VHC group
(p < 0.01 vs CNT/VHC) (two-way ANOVA, factor MAM:
F1,31= 21.96, p < 0.001; factor treatment: F3,31= 8.649, p < 0.001;
factor MAM× treatment interaction: F3,31= 3.585, p < 0.05,
Fig. 5A). An increase in CB1 protein levels (p< 0.001 vs CNT/VHC)

(two-way ANOVA, factor MAM: F1,23= 16.01, p < 0.01; factor treat-
ment: F3,23= 11.87, p < 0.001; MAM× treatment interaction:
F3,23= 7.423; p < 0.01, Fig. 5C) was observed, but not in CB1 re-
ceptor binding activity (CNT: 23.00 ± 4.398 fmol/mg; MAM:
25.68 ± 1.348 fmol/mg; unpaired t-test = 0.5834; p > 0.05). Peri-
pubertal treatment with CBD30 reversed MAM-induced changes in DNA
methylation (p < 0.05), mRNA (p < 0.001) and protein (p < 0.001)
expression at adulthood (Fig. 5A–C).

AM251 treatment reversed CB1 mRNA (p < 0.001) but not protein
(p > 0.05) expression in MAM rats; as well it increased DNA methy-
lation in the CNT rats (p < 0.01) (Fig. 5A–C). This apparent dis-
crepancy is likely due to the different turnover between mRNA and
protein. HAL did not induce notable modifications in CB1 receptors of
adult MAM rats, except for an increased DNA methylation (p < 0.001).
The expression of further genes closely associated with the ECS at level
of PFC, HIP or NAC are described in supplementary data and depicted
in supplementary Fig. S2-S3.

3.2.2. Endocannabinoid (EC) levels in the PFC of adult MAM rats
We found a non-significant increase in 2-AG level (p > 0.05) in the

PFC of MAM/VHC animals (two-way ANOVA, factor MAM:
F1,27= 27.98, p < 0.001; factor treatment: F3,27= 6.237, p < 0.01;
MAM× treatment interaction, F3,27= 8.242; p < 0.001), which was
significantly decreased by CBD30 and AM251 (p < 0.05), but not by
HAL (p > 0.05). However, the latter two compounds increased the 2-
AG content in CNT rats (p < 0.001, Fig. 6B). Two-way ANOVA re-
vealed for the AEA PFC content a main effect of MAM (F1,28= 38.00,
p < 0.001) a significant MAM× treatment interaction, F3,28= 6.761,
p < 0.01; but not of treatment (F3,28= 2.311, p > 0.05). Post-hoc
analyses revealed that AEA content was enhanced by CBD30 in the CNT
group (p < 0.001) (Fig. 6A). No difference was found between the two
experimental groups in the PFC levels of PEA (two-way ANOVA, factor
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MAM: F1,30= 0.0088, p > 0.05; factor treatment: F1,30= 1.866,
p > 0.05; MAM× treatment interaction, F3,30= 1.187, p > 0.05;
Fig. 6C) and OEA (two-way ANOVA, factor MAM: F1,30= 0.7649,
p > 0.05; factor treatment: F1,30= 0.8796, p > 0.05; MAM× treat-
ment interaction, F3,30= 0.3431, p > 0.05; Fig. 6D). The EC levels in
HIP and NAc are described in supplementary data and depicted in
supplementary Fig. S3.

4. Discussion

MAM administration at gestational day 17 induced cognitive and
social deficits in rats (Lodge and Grace, 2009; Micale et al., 2013), as
seen by the reduced time of interaction in the SI (as index of social
withdrawal) and lower discrimination ratio in the NOR (as index of
impaired recognition), which are often considered the two signs of SCZ-
like symptoms (Young et al., 2009). The object recognition model is a
spontaneous recognition test based on the natural bias of rats toward
exploring novel objects (Ennaceur and Delacour, 1988) and has been
listed by the MATRICS initiative as a relevant test to study visual
learning and memory deficits in SCZ (Young et al., 2009). In our study,
MAM offspring, which spent the same time exploring the two identical
objects during familiarization phase, showed no preference for the

novel object during the testing phase, indicating an inability to re-
cognize the familiar object. Considering that the total object explora-
tion time did not differ among treatment groups, the MAM rats are
thought to have a deficit in short-term object recognition memory in
contrast to a deficit in object exploration (i.e., impaired locomotor ac-
tivity). This is consistent with observations in preclinical (Flagstad
et al., 2005; Micale et al., 2013) and human studies (Heckers et al.,
2000; Zanto et al., 2011), further supporting the face validity of the
MAM model.

Similarly, the social deficit observed in SI is also not related to
changes in motor activity, since no difference was found in the number
of interactions. The locomotor activity paradigms served as an internal
control for possible unspecific stimulant effects. Given that no sponta-
neous hyperlocomotor activity was found in MAM animals, partially in
line with previous results (Flagstad et al., 2004; Moore et al., 2006;
Perez and Lodge, 2012; Ruda-Kucerova et al., 2017a, 2017b), overall
our study reinforces the original findings that social withdrawal in the
SI and cognitive impairment in the NOR are a robust phenotype in the
MAM model. Nevertheless, the behavioral assays (i.e. NOR, SI and
spontaneous locomotor activity) used in the present study are not
strictly specific for SCZ and could be applicable to assess symptoms
domains shared with other neuropsychiatric disorders (i.e. autism,
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depression, anxiety). Thus, further behavioral tasks to evaluate both the
aberrant response to amphetamine or NMDA antagonist as index of
positive-like deficits and the different cognitive or negative-like symp-
toms would be useful.

At the molecular level, a consistent reduction in DNA methylation at
the CNR1 promoter was observed, which was associated with a sig-
nificant elevation in CB1 gene and protein expression restricted to the
PFC. Excitingly, this modification at the cannabinoid CB1 receptor level
coincided with the negative- and cognitive-like symptoms in the MAM
rats. This was expected considering that the PFC is a key region for the
integration of cognitive and negative signs of SCZ (Guidali et al., 2011;
Pratt et al., 2009; Young et al., 2009). This observation expands on our
previous findings and thereby further supports the translational value
of the MAM model (D'Addario et al., 2017). Our results are consistent
with previous findings showing increased CB1 mRNA expression at the
level of PFC in a diverse variety of neurodevelopmental models (Marco
et al., 2014; Robinson et al., 2010). However, in post mortem studies
contradictory results have been found since decreased (Eggan et al.,
2008; Kucerova et al., 2014), increased (Saito et al., 2013) or un-
changed (Ruggiero et al., 2017) CB1 expression or activity at the PFC
level have been detected. Conflicting data in the literature may be due
to differences in patient symptom severity, pharmacological treatments
or diagnostic methods in studies. Considering that alterations in the
PFC seem to affect recognition memory in individuals suffering from
SCZ (Heckers et al., 2000; Zanto et al., 2011) and in animal models
(Ragozzino et al., 2002; McLean et al., 2017) alike, our data suggests
that specific CB1 alterations could mediate the involvement of the PFC
in the short-term recognition memory deficits observed in MAM rats.
This would be of particular impact in the development of new ther-
apeutic strategies for SCZ symptoms given the reversible nature of
epigenetics (Ovenden et al., 2018). Further investigations are war-
ranted to understand the epigenetic mechanisms regulating CB1 ex-
pression in PFC and, most importantly, their impact on negative and/or
cognitive-like symptoms in MAM rats. Consistently with some pre-
clinical and human studies (Kucerova et al., 2014; Saito et al., 2013),
the ECs content and partially the metabolic enzymes both in the PFC
(see Fig. S2) and in HIP (see Fig. S3C) were not altered by prenatal
MAM exposure; thus presenting the possibility that the abnormal be-
havior of MAM offspring could be in part due to a maladaptation of ECS
tone (in terms of CB1 receptor expression) in the PFC. However, can-
nabinoid CB1 receptors are present at very high levels in inhibitory
(GABAergic interneurons) and at a lesser extent in excitatory (gluta-
matergic) terminals (Marsicano and Lutz, 1999), playing a specific role
in the repertoire of different emotional behaviors (Terzian et al., 2011,
2014; Micale et al., 2017); thus, we cannot exclude that the SCZ-like
phenotype in MAM animals could be specifically due to alterations of
CB1 receptors on different neuronal subpopulations at the level of the
PFC.

Interestingly, at prepuberty ECS signaling was only mildly altered
(increased nape mRNA expression in PFC, decreased ptpn22 mRNA
expression in HIP and lower OEA content in the NAc; Fig. S4). These
subtle alterations might be also partially relatable to transition into a
SCZ-like phenotype which is observed in prepuberty/adolescent MAM
rats (Le Pen et al., 2006; Gomes et al., 2016; Kallai et al., 2017).
However, CB1 receptor does not seem to be altered in the early neu-
rodevelopmental phase until a later stage of the MAM model. Further
studies are necessary to assess the potential early alterations of different
neurotransmitter systems (i.e. DAergic, GLUergic, GABAergic) whose
dysfunction in adulthood is well recognized in human studies and in
experimental models (Gomes et al., 2016).

According to the neurodevelopmental hypothesis of SCZ, environ-
mental risk factors (i.e. trauma, infection, malnutrition) during the
perinatal period could affect the neuronal circuit development and
contribute to the transition into psychosis at adulthood (Marenco and
Weinberger, 2000). In this context, human studies and preclinical data
have suggested that childhood or early adolescence could represent the

promising window of opportunity for a course-altering strategy (Gomes
et al., 2016; Millan et al., 2016; Sommer et al., 2016). In the MAM
model, early pharmacological intervention or enriched living condi-
tions prevented the development of SCZ-related deficits at adulthood
(Bator et al., 2018; Du and Grace, 2013, 2016). Here, we showed that
peripubertal treatment with a high dose of CBD or, in part, with AM251
rescued the decreased sociability and recognition memory deficit in
MAM offspring. The peripubertal age corresponds to mid-to-late ado-
lescence in humans, which is a pivotal period for PFC development.
Dysregulation in the PFC during this period is assumed to be involved in
the pathophysiology of SCZ (Volk and Lewis, 2002). Thus, our results
further support the idea that early adolescent intervention could modify
the appearance of SCZ-like alterations induced by prenatal MAM ex-
posure. The present data also align with the therapeutic benefit of CBD
to improve the negative symptoms and cognitive deficits in clinical
studies (Fasinu et al., 2016; McGuire et al., 2018; Osborne et al., 2017b)
and in most of preclinical models (Kucerova et al., 2014; Osborne et al.,
2017a; Peres et al., 2016). By contrast, HAL failed to reproduce the CBD
effect in MAM rats and, much alike AM251, impaired the social beha-
vior in control rats. Notably, HAL lack of efficacy in MAM rats is in line
with human studies (Young et al., 2009) and preclinical evidence in the
MAM model (Brown et al., 2013), where antipsychotics showed poor
effectiveness towards negative and cognitive symptoms; thus stimu-
lating the development of innovative pharmacological approaches
(Kapur and Mamo, 2003). However, further investigations are needed
to assess the effects of CBD on additional cognitive and social domains,
which are impaired in SCZ.

The mechanisms underlying the beneficial effects of CBD on SCZ-
like symptoms are still elusive. Aberrant DAergic transmission in the
brain is a common target of all current antipsychotics and a well-es-
tablished neuropathological feature both in SCZ and in MAM model
(Grace, 2016). Recently, CBD has been found to attenuate DAergic
hyperfunction in the mesolimbic pathway (Renard et al., 2017) and, in
agreement with its pharmacological profile as atypical antipsychotic
(Zuardi et al., 1991; Guimarães et al., 2004), also showed partial ago-
nistic activity at dopamine D2 receptors, similarly to aripiprazole
(Seeman, 2016), which may at least in part account for its antipsychotic
effects. However, in our study we used the typical antipsychotic HAL as
positive control, since it reduced the hyperdopaminergic activity in the
MAM model (Valenti et al., 2011), while the second generation anti-
psychotic risperidone failed to improve the MAM-induced cognitive
deficits (Brown et al., 2013) and only modestly improved performance
in the context of pharmacologically induced NOR deficits (Young et al.,
2009). Another explanation is that CBD attenuated SCZ-like abnorm-
alities at adulthood by targeting aberrant stress responsivity during the
peripubertal period. In the MAM model, rats exhibited altered stress
responsivity during early development (Zimmerman et al., 2013),
which was circumvented by peripubertal diazepam treatment through a
reduction of the hyperdopaminergic state (Du and Grace, 2013, 2016).
As such, it is possible that peripubertal CBD treatment attenuated the
stress responses induced by prenatal MAM treatment in agreement with
its well shown stress relief/anxiolytic activity through a 5-HT1A me-
chanism (Fogaça et al., 2014, 2018; Campos et al., 2012, 2013, 2016;
Marinho et al., 2015). Further investigations into the impact of CBD on
altered DAergic system may shed light on the mechanisms underlying
the improvement of social behavior and recognition memory in MAM
offspring. However, we also cannot exclude other targets of CBD since
the typical antipsychotic HAL did not prevent the development of be-
havioral abnormalities in our study (see Fig. 2A and Fig. 3A), while it
previously reduced DAergic neuron population activity in MAM rats
(Valenti et al., 2011).

At the molecular level, repeated peripubertal CBD treatment com-
pletely normalized MAM-induced cannabinoid CB1 receptor alterations
in the PFC, without having per se any effect in control rats. Specifically,
CBD attenuated the decreases in DNA methylation and the paralleled
mRNA and protein expression. These effects may in part contribute to
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its antipsychotic-like effects seen by the improved cognitive and social
performance of MAM/CBD30 rats in the NOR and SI, respectively.
Interestingly, the CB1 antagonist/inverse agonist AM251 partially
normalized the altered CB1 receptor (just the mRNA expression), which
at least could be involved in its partial efficacy against MAM insult. In
contrast, HAL, which increased just DNA methylation of CB1 receptor,
failed to reverse the SCZ-like deficits in MAM rats. However, higher
DNA methylation induced by HAL and AM251 treatment in CNT rats
was not accompanied by decreased gene expression, even if there might
be a delay in the molecular outcomes. These discrepancies further
support the concept that although several antipsychotics act as epige-
netic modifiers, the precise mechanisms are still unclear. In our study,
CBD treatment alone restored both CNR1 expression levels and DNA
methylation at gene promoter presumably via an indirect mechanism,
which could involve several neurotransmitter systems (Ovenden et al.,
2018). Given the heterogeneity of the disease, the higher rate of non-
responders to antipsychotics, the severe side effects of the latter and the
limits of experimental models per se, this complex scenario suggests that
the effects of antipsychotics on the DNA methylation status of genes
involved in the pathophysiology of SCZ are still not fully elucidated.

Our results do not support the previous findings that associated the
antipsychotic effect of CBD with increased AEA levels in serum
(Osborne et al., 2017b). A higher AEA concentration was found in the
PFC of CNT/CBD30 but not of MAM/CBD30 rats (see Fig. 6A). Given
that CBD can interact with several molecular targets that elevate AEA
content, such as the hydrolyzing enzyme FAAH (De Petrocellis et al.,
2011) and the AEA transporter FABPs (Elmes et al., 2015), only spec-
ulations can be made on the possibility that CBD reduced AEA in-
activation in the PFC of control but not MAM rats. The underlying
mechanisms that could be involved in its antipsychotic activity are
likely multifaceted, given that CBD modifies the function of several
receptors in the central nervous system (CNS) including CB1, CB2,
TRPV1, GPR55, 5-HT1A, PPARγ, μ and δ opioid receptors. Moreover, we
cannot exclude that its beneficial effect to prevent the development of
SCZ-like alterations as well as its safety profile could be also due to its
activity as negative allosteric modulator of the cannabinoid CB1 re-
ceptors (Laprairie et al., 2015). By contrast, the CNS adverse effects and
the lack of significant effect on psychopathology, could be associated
with orthosteric CB1 antagonist/inverse agonists, such as rimonabant
or AM251 (Ross, 2007; Jones, 2008; Laprairie et al., 2015). Besides its
effect on CB1 receptors, we cannot rule out that the antipsychotic-like
activity of CBD on MAM rats could also be based on its capacity to
reduce 2-AG content in PFC. However, a possibility that CBD-induced
reduction of 2-AG levels was a mere consequence of the amelioration of
the SCZ-like signs, or the reduction of CB1 expression by the cannabi-
noid cannot be neglected.

Another intriguing finding of the present study is that AM251 and
HAL increased 2-AG levels in CNT rats (see Fig. 6B), an effect that could
be in part responsible for the social withdrawal similar to that observed
in MAM rats. The mechanisms underlying the 2-AG increase in the PFC
of CNT rats remain undetermined and may be linked to changes in the
dopaminergic and/or glutamatergic neurotransmission, as already
suggested (Guidali et al., 2011). However, these results provide evi-
dence that AM251 and HAL trigger different behavioral responses in the
context of negative-like symptoms based on experimental groups (CNT
vs. MAM), consistent with previous reports in healthy subjects (Mas
et al., 2013) and in laboratory-based studies (Guidali et al., 2011;
Seillier et al., 2013).

5. Conclusion

In agreement with the hypothesis of preventive antipsychotic
treatment in individuals that are at risk of developing SCZ (Gomes
et al., 2016; Millan et al., 2016; Sommer et al., 2016), repeated peri-
pubertal CBD treatment prevented MAM-induced negative- and cogni-
tive-like symptoms at adulthood, which are insensitive to currently

used antipsychotics. Conveniently, CBD did not negatively affect con-
trol offspring, supporting its safety profile (Iffland and Grotenhermen,
2017), which is a pivotal ethical issue when we consider both the
preventive treatment as intervention strategy and the rates of in-
dividuals (∼30%) developing the disease (Mokhtari and Rajarethinam,
2013; Piras et al., 2014). We also confirmed that a dysregulation of the
ECS may play a role in the pathophysiology of the disease, which seems
to be a promising target for innovative treatment. As highlighted in a
recent review (Osborne et al., 2017b), several possible mechanisms of
action have been suggested. However, to the best of our knowledge,
none of them have been conclusively identified as the prime mechanism
for the antipsychotic effect of CBD. Based on our results, peripubertal
age may be a promising window for CBD treatment to prevent the
emergence of SCZ-like deficits at adulthood, which may in part relate to
the reversal of CB1 dysregulation in the PFC. Further studies are ne-
cessary to assess ECS effects on different neurotransmitter systems (i.e.,
dopaminergic, glutamatergic, GABAergic).
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