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Abstract: Pain is an unpleasant sensory and emotional experience. Adequate pain control is often
challenging, particularly in patients with chronic pain. Despite advances in pain management, drug
addiction, overtreatment, or substance use disorders are not rare. Hence the need for further studies
in the field. The substantial progress made over the last decade has revealed genes, signalling
pathways, molecules, and neuronal networks in pain control thus opening new clinical perspectives
in pain management. In this respect, data on the epigenetic modulation of opioid and cannabinoid
receptors, key actors in the modulation of pain, offered new perspectives to preserve the activity of
opioid and endocannabinoid systems to increase the analgesic efficacy of opioid- and cannabinoid-
based drugs. Similarly, upcoming data on cannabidiol (CBD), a non-psychoactive cannabinoid in
the marijuana plant Cannabis sativa, suggests analgesic, anti-inflammatory, antioxidant, anticonvulsi-
vant and ansiolitic effects and supports its potential application in clinical contexts such as cancer,
neurodegeneration, and autoimmune diseases but also in health and fitness with potential use in
athletes. Hence, in this review article, we summarize the emerging epigenetic modifications of opioid
and cannabinoid receptors and focus on CBD as an emerging non-psychoactive cannabinoid in pain
management in clinical practice, health, and fitness.

Keywords: pain; epigenetics; opioids; Oprm1; cannabinoids; CB1; CBD; clinical practice; health
and fitness

1. Introduction

According to the International Association for the Study of Pain (IASP), pain is defined
as an unpleasant sensory and emotional experience associated with actual or potential
tissue damage or described in terms of such damage even in its absence [1]. This definition
highlights that the concept of pain is not interchangeable with that of nociception, despite
their close connection. Nociception refers to the process by which a harmful or potentially
harmful stimuli are detected by specific receptors (which vary depending on the type of
stimulus from the environment) and are transmitted to the central nervous system. Thus,
nociception does not include the emotional and cognitive components that characterize
pain [2]. Additionally, it is well known that the experience of pain varies depending on
the individual, situation, mood, level of attention, and previous experiences [3]. Thus,
the experience of pain cannot be simply reduced to a binary “all-or-nothing” mechanism
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but should be understood as a series of complex phenomena involving the integration
and modulation of the basic signal. In this respect, opioid and cannabinoid receptors are
widely co-distributed in the brain area involved in the processing of pain signalling but
also in the spinal cord and peripheral tissues; as a consequence, they share key roles in
nociception [4–7]. This has led to the clinical use of opioids and cannabinoids as analgesic
drugs for the treatment of pain, but still controversies related to tolerance, addiction, or
psychoactive effects occur [8–11]. Both systems are epigenetically modulated in health
and disease [9,12] and the epigenetic modulation of gene expression of pro-nociceptive,
anti-nociceptive, and inflammation-related genes has been recently reported [13,14].

Recently, attention has been focused on cannabidiol (CBD), a cannabinoid in the
marijuana plant, that lacks psychoactive properties thus having promising results for the
treatment of pain in several disease conditions [15,16], for physical health and fitness,
and for possible use in athletes, due to a number of physiological, biochemical, and
psychological effects potentially useful in improving performance, cell damage, and fatigue
recovery, related to physical and cognitive exertion in sports, see [17–19] for recent review.

In this review article, we first provide a brief summary on the genesis and modulation
of nociception in the nervous system; then, we summarize the emerging epigenetic modifi-
cations of opioid and cannabinoid receptor encoding genes in pain; lastly, we focus on CBD
as an emerging non-psychoactive cannabinoid in pain management in clinical practice and
discuss the use of CBD in health and fitness, and athletes.

2. Genesis and Modulation of Nociception in the Nervous System

Neurons responsible for nociception are pseudounipolar, with their cell bodies located
in the dorsal root ganglia (DRG) of the spinal nerves (or in one of the sensory ganglia of the
trigeminal nerve) and having two axonal projections that extend to the body’s periphery
and the dorsal horn of the spinal cord (or the trigeminal nucleus; [20,21]).

Nociceptors transduce potentially harmful physical and chemical stimuli [22] and are
divided into two types, based on their myelin sheath.

Aδ fibers: with a thin myelin sheath; Type I: respond to strong mechanical or chem-
ical stimuli and, to a lesser extent, to high temperatures; Type II: respond primarily to
thermal stimuli.

C fibers: completely unmyelinated C fibers are known to be polymodal, meaning they
can respond to a wide variety of stimuli; some are even “silent”, typically becoming active
only in the presence of concurrent inflammatory irritation [22,23]. This is an example of
how the pain stimulus is modulated by various factors even at the peripheral level.

There are other differences among nociceptors: some C fibers release substance P (SP)
and calcitonin gene-related peptide (CGRP) and respond to the nerve growth factor (NGF);
other C fibers respond to the glial cell-derived neurotrophic factor (GDNF), neurturin, and
artemin. Different nociceptors, moreover, respond to heat, cold, acidic milieu, or chemical
irritants. Interestingly, while the peripheral terminal responds to ambient stimuli, both the
peripheral and the central terminals respond to endogenous molecules such as pH, lipids,
and neurotransmitters and can, therefore, be targets for analgesic treatments [23].

Various chemical mediators of inflammation, such as bradykinins, prostaglandins,
histamine, interleukin (IL)-1β, tumor necrosis factor, and NGF significantly potentiate
nociceptors by increasing neuronal excitability and decreasing nociceptor activation thresh-
olds. These pathophysiological mechanisms underlie hyperalgesia (increased pain to a
normally painful stimulus) and allodynia (pain in response to a normally non-painful
stimulus) [24,25].

The NGF, primarily known for stimulating neuronal development, significantly mod-
ulates nociceptor signals at the peripheral level. It is produced by damaged and inflamed
tissues [26,27], as well as by Schwann cells surrounding the nerves in case of direct dam-
age [28]. NGF enhances nociception through various mechanisms, including signal trans-
duction by multiple tyrosine kinases [29] and the facilitation of tetrodotoxin-resistant
sodium currents while suppressing potassium outward currents, thereby increasing noci-
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ceptor activity [30]. Interestingly, genetic mutations for NGF or its receptor lead to pain
insensitivity [31].

2.1. Modulation of the Signal in the Central Nervous System

Painful stimuli are transmitted to the central nervous system through the dorsal
horn of the spinal cord, where nociceptors synapse with second-order neurons that then
project via the spinothalamic and spinoreticulothalamic tracts. Specifically, Aδ and C
fibers terminate in Rexed laminae I and II, establishing multisynaptic connections with
non-painful somatosensory Aβ fibers. These ascending pathways primarily project to the
thalamus, parabrachial nucleus, and amygdala [2,32].

Neurotransmitters used by nociceptors at spinal synapses include glutamate (acting
on AMPA/kainate receptors), substance P (acting on Neurokinin 1 receptors, present
in about 75% of nociceptors in lamina I), and CGRP (acting on a recently characterized
heterodimeric Gs protein-coupled receptor). CGRP is involved in peripheral sensitization,
being up regulated during inflammatory or neuropathic pain [33].

The peripheral and central nervous systems, though schematically divided, influence
each other reciprocally. For instance, the facilitation of nerve signal genesis by inflammatory
factors can elicit increased spontaneous activity centrally and reduce activation thresholds
of wide dynamic range (WDR) neurons in the dorsal horn [24,34–36]. This can activate
N-methyl-D-aspartate (NMDA) receptors, typically not involved in spinal nociceptive
transmission, leading to neuronal hyperexcitability; thus, nociception can be modulated in
long-term periods [37,38].

2.2. The Role of Brain Structures

The brain’s ability to modulate pain has long been suspected, as evidenced by obser-
vations of US soldiers in World War II [39], but experimental confirmations have come
relatively recently. Pain is physiologically connected to peripheral nociceptive transmission,
usually elicited by tissue damage, and includes a substantial emotional component, i.e., the
unpleasantness associated with the pain experience. Ignoring either component overlooks
an aspect of the entire issue [3].

These two aspects can be associated with two different components related to the
brain’s processing of pain: a medial component (responsible for the emotional–motivational
processing of pain) consisting of the medial thalamic nuclei, the anterior cingulate cortex,
and the insular cortex, and a lateral component (related to the sensory–discriminative
characteristics of pain), consisting of the primary and secondary somatosensory cortex,
as well as the ventroposterolateral and medial thalamic nuclei [40]. These hypotheses
have been demonstrated and supported by numerous studies, with some particularly
emblematic cases reported: patients with lesions in the somatosensory cortex but with
preserved medial component formations were unable to localize the sensation or describe
its type (i.e., whether it was a warm/cold, burning/stinging sensation, etc.), but they
felt a “clearly unpleasant” sensation vaguely coming from the limb where the stimulus
was applied [41]. Conversely, patients suffering from intractable pain, after undergoing a
cingulotomy (thus having a lesion in the medial component), reported immediate relief
from the suffering associated with the pain, while still being able to distinguish the painful
sensation, though it was devoid of its “unpleasant” characteristic [42].

2.3. Descending Pathways, Bidirectional Control, and DNIC

The discovery of the role of the periaqueductal gray (PAG) in nociception modulation
has been crucial for understanding pain transmission modulation mechanisms. Tsou and
Jang first demonstrated the profound antinociceptive effect of morphine microinjections
in the rabbit PAG [43]. Subsequent studies have explored similar effects in animal models
and humans, leading to the use of deep brain stimulation for treating intractable pain in
selected patients [44].
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The PAG receives opioidergic afferents from the anterior cingulate cortex, promoting
its activity [45] and sending projections to pontine noradrenergic nuclei and serotonergic
neurons in the rostroventromedial medulla (RVM) [46,47], exerting nociceptive inhibition
via noradrenaline and serotonin [48].

The RVM communicates with the PAG, locus coeruleus, and thalamus, projects to
the dorsal horn of the spinal cord and the dorsal trigeminal nucleus [49,50], and synapses
with second-order interneurons that send ascending nociceptive projections, central to
descending pain modulation [30].

The concept of Diffuse Noxious Inhibitory Controls (DNIC) emerged from observing
that dorsal horn neuron activity (especially WDR neurons receiving Aβ and C fiber input)
is inhibited by the concurrent application of a second nociceptive stimulus at an extra-
segmental site [51,52]. Studies show that DNIC is integrated and coordinated at the
dorsal reticular nucleus (DRt), connected to the PAG, RVM, thalamus, amygdala, and
numerous cortical areas, sending fibers capable of modulating the pain stimulus to the
spinal cord [53–55]. Each DRt neuron can send axons to multiple regions, functioning
as a center capable of initiating multimodal pain modulation with continuous spinal–
supraspinal–spinal feedback [56].

3. Opioid and Cannabinoid Receptors in Pain: Emerging Molecular Mechanisms
3.1. Opioid Receptors

Opioid receptors, which are G-protein-coupled receptors (GPCR), are expressed by
neurons in both the central and peripheral nervous systems, as well as in neuroendocrine,
ectodermal, and immune cells [57,58]. Three primary types of opioid receptors have been
identified: mu (µ), delta (δ), and kappa (κ), also known as MOR, DOR, and KOR. These
receptors are physiologically stimulated by endogenous opioid peptides, such as endor-
phins, dynorphins, and enkephalins. These molecules play a crucial role in modulating
pain perception and influencing mood, behavior, and reward processing [59].

Current research, largely based on animal model studies, has elucidated distinct
functions for each receptor type: µ receptors are primarily responsible for analgesia and
the rewarding, dependence-inducing effects of exogenous opiates; δ receptors contribute
to anxiolytic and antidepressant effects; and κ receptors, upon activation, induce psy-
chotomimetic, hallucinogenic, and aversive responses, thus being associated with negative
emotional experiences [60–62].

Opioid receptors are distributed throughout the nervous system, and exogenous
opioid agonists can exert their effects at various levels, whether administered topically,
epidurally, or systemically [63].

As previously described, DRG neurons activation is critical in the perception of both
acute and chronic pain, and these cells express a great number of opioid receptors [64].
Peripheral activation of these receptors is responsible for a great part of the analgesic effect
of exogenous opioids; lacking the notorious adverse effects of central opioid receptors
stimulation, such as behavior alteration and potential addiction, there is a great interest both
in clinical and research settings for a selective peripheral opioid receptor activation [65,66].

3.2. Cannabinoid Receptors

Classical cannabinoid receptors, namely CB1 and CB2, are GPCRs capable of mediat-
ing the effects of the over 100 phytocannabinoids found in the marijuana plant, Cannabis
sativa L., [e.g., ∆9-tetrahydrocannabinol (∆9-THC), ∆8-THC, cannabinol (CBN), CBD,
cannabigerol (CBG), etc.)], endogenous cannabinoids [e.g., the main endocannabinoids
anandamide (AEA) and 2-arachidonoyl glycerol (2-AG)], and synthetic cannabinoid ag-
onists and antagonists [67]. While CB1 is largely distributed within the brain and at the
periphery, the expression of CB2 is restricted to immune cells and in a few neurons within
the brain but widespread distributed at the periphery [68,69]. In addition to endocannabi-
noids and classical cannabinoid receptors, the Na+ channel transient receptor potential
vanilloid 1 (TRPV1), non-canonical receptors (e.g., GPR18, GPR55, and GPR119), and
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endocannabinoid-like compounds (e.g., N-acylethanolamines and 2-monoacylglycerols)
hydrolyzing and biosynthetic enzymes, all together form the endocannabinoid system
(ECS) [70,71]. This system has a recognized role in pain, mood, anxiety, depression, neuro-
genesis, neuroinflammation, synaptic plasticity, reward, cognition, learning, and memory.
As a consequence, the ECS has received long lasting attention in pharmacology and clinical
practice [71–78]. Nevertheless, cannabinoids, such as cannabis, hashish, and marijuana,
that cause changes in mood and perception, euphoria, happiness, relaxation, deep sleep,
and reducing anxiety, are considered drugs to use socially and recreationally.

As reviewed elsewhere, several studies indicate that the ECS regulates the nocicep-
tive threshold, thus raising the possibility that the hypoactivity/inactivation of the ECS
produces/prolongs chronic pain and hyperalgesia [6,7,79]. However, while studies in ani-
mal models provide substantial evidence that the exogenous modulation of the ECS hold
considerable promise for the development of analgesic drugs, the challenge of translating
this knowledge into clinically practice is quite controversial. Hence, the need for further
studies in the field, to better understand molecular mechanisms, validate treatments, and
improve clinical translation.

3.3. The Epigenetic Modulation of Genes Encoding for Opioid and Cannabinoid Receptors in Pain

Neuropathic pain is a clinical issue still difficult to treat. Changes in gene expression
in peripheral sensory nerves and neurons as a consequence of injury have been reported
(Figure 1) (for recent review [13,14]).
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Nevertheless, few studies have investigated the epigenetic mechanisms at the basis of
the increased expression of pro-nociceptive and the decreased expression of anti-nociceptive
genes (e.g., genes encoding for α2δ-1, NMDA receptor, K+ channels, pannexin-1, opioid,
and cannabinoid receptors) or those expressed in glia and macrophages encoding for in-
flammatory cytokines and chemokines in response to nerve injury [e.g., IL-1β, IL-6, and
CXCL1, CXLC8, CCL2-3] [13,14]. Epigenetic changes affect gene expression without any
effect on DNA nucleotide sequence and comprise DNA methylation at GpC sites; histone
tail modifications—primarily acetylation (Hac) and methylation (Hmet) at specific lysine
(K) residues; and the production of non-coding RNA (ncRNA). Epigenetic changes in
DNA and chromatin architecture require the activity of epigenetic writers, erasers, and
readers [80,81]. In preclinical studies, peripheral nerve injury induces differential and
dynamic changes in DNA methylation status [82,83] and affects the expression rate of
both non-coding RNA [9,14], and epigenetic machinery like the DNA methyltransferases,
(DNMT), the epigenetic repressor methyl-CpG-binding domain protein 1 (MBD1) [84],
5-hydroxymethylcytosine converting enzyme (TET1) [85], arginine methylation enzymes
(PRMT4, PRMT8, PRMT9), the methyltransferase EZH2, or the H3K9 methyltransferase
G9a, the histone deacetylases (HDACs), and the histone acetylases (HATs) [14]; hence,
the modulation of the epigenetic machinery by specific epigenetic activators or inhibitors
represents a possible strategy in the modulation of injury-induced neuropathic pain. Fo-
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cusing on opioid and cannabinoid receptors, in a rat model of chronic constriction injury
(CCI) of the sciatic nerve, the trafficking of DOR in the brainstem nucleus raphe magnus
(NRM) to pain-modulating neuronal synapses depends on the epigenetic upregulation
of NGF by HDAC inhibitors [86]. DNMT inhibitors increased the expression of Oprm1,
the gene encoding for MOR and MOR antagonism by naloxone exacerbated mechanical
hypersensitivity induced by incision [87]. Consistently, the conditional knockout of Ehmt2,
the gene that encodes for G9a, restores the physiological expression level of MOR and CB1
in DRG, thus restoring the analgesic effects of morphine [88], and potentiating the analgesic
effects of CB1 agonists [89].

Furthermore, Viet et al. demonstrated [90] that in peripheral leukocytes the epigenetic
regulation of Oprm1 contributes to opioid tolerance in a cohort of cancer patients (n = 84)
and demonstrated that in an animal model the reactivation of MOR expression in cancer
cells inhibits mechanical and thermal hypersensitivity and prevents opioid tolerance [90].

Also, non-coding RNAs play a role in the epigenetic modulation of pain, drug addic-
tion, and the healthy brain [9,91,92]. In particular, among the several microRNA capable of
interacting with the 3′ untranslated region of Opmr1 RNA, the let-7 family of microRNA
resulted as being critical when regulating MOR function in opioid tolerance [93]. Lastly, the
METTL3-mediated m6A modification may occur in Opmr1 RNA in a rat model of CCI [94].

Hence, epigenetic mechanisms should be useful in the treatment of pain to increase
the analgesic efficacy of opioid- and cannabinoid-based drugs.

The main epigenetic changes in Oprm1, Cnr1, and Cnr2 genes, respectively, encoding
for MOR, CB1, and CB2, respectively, occurring in the DRG after traumatic nerve injury are
summarized in Table 1.

Table 1. Epigenetic modulation of opioid and classical cannabinoid receptor genes in DRG following
nerve injury.

Gene Effects on Transcription Epigenetic Modification Reference

Oprm1 ↓
↑ H3K9me2
↑ H3K27me3
↓ H3K4me3

[88]

Oprm1 ↓ H3/H4 hypoacethylation [95]

Oprm1 ↓ ↑ promoter DNA methylation via MBD1-dependent
recruitment of DNMT3a [84]

Oprm1 and Oprk1 ↓ ↑DNA methylation via MBD1-dependent recruitment
of DNMT3a for Oprm1 [96]

Cnr1 ↓ ↑ H3K9me2 at promoter region [89]

Cnr2 ↑

↑ H3K4me3
↑ H3K9ac
↓ H3K9me2
↓ H3K27me3

No effect on DNA methylation

[97]

↑ increase; ↓ decrease.

4. Emerging Applications of CBD in Pain Management
4.1. Clinical Applications of CBD in Disease

In recent years, CBD, the second most prevalent active ingredient in cannabis, has been
increasingly considered a safe alternative to other pharmacological therapies for various
clinical conditions such as neurological condition, chronic pain, sleep disorders, and mood
disorders [98].

CBD is present in both medicinal and fiber-type C. sativa plants (hepm), but, unlike ∆9-
THC, it is completely non-psychoactive [99]. The safety of CBD has been further underlined
by the World Health Organization (WHO) since pure CBD has been considered without
abuse potential, even in high doses for children with drug-resistant epilepsy [100]. The
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most commonly reported side effects associated with CBD use are drowsiness and fatigue,
dry mouth, nausea, reduced appetite, and diarrhea [101].

CBD can be found in different forms: pharmaceutical products, medical products, or
wellness products/nutritional supplements. The only two pharmaceutical CBD-based prod-
ucts that have specific indications are expensive and unavailable for off-label use. Epidiolex
is an oral solution containing 100 mg/mL of CBD, approved in the US and in 27 countries
of the European Union for children and adults with Dravet and Lennox-Gastaut Syndrome.
Nabiximols (Sativex®) is an oromucosal spray with 1:1 CBD:THC, approved in some ju-
risdictions for multiple sclerosis-associated spasticity and pain. Furthermore, in countries
where medical cannabis is regulated, medical products with variable indications are avail-
able. These formulations may contain CBD with various quantities of THC [102]. Finally,
many CBD products are marketed as dietary supplements/health products, raising more
medical concerns as they are less regulated and potentially contaminated with chemicals,
heavy metals, pesticides, and mycotoxins [102].

Preclinical evidence of CBD use suggests analgesic, anti-inflammatory, antioxidant,
anticonvulsant, and anxiolytic effects. The principal molecular mechanisms responsible for
these effects are the interactions with classical cannabinoid receptors (CB1, CB2); however,
additional biological mechanisms are currently recognized. These mechanisms involve the
interaction of CBD with other receptors and the start of intracellular signaling pathways,
which further support its potential application in new clinical contexts such as cancer,
neurodegeneration, and autoimmune diseases [15].

The clinical evidence is less strong, but several studies in recent years has focused
on the use of CBD in the management of pain due to various clinical conditions. CBD
can decrease nociception and reduce the frequency of painful symptoms by acting on the
endocannabinoid system and involving neuro- and immuno-modulation at the central and
peripheral levels [103].

CBD may be useful in treating chronic pain, a clinical condition defined as discomfort
sensation that persists beyond 3–6 months or beyond the expected [104]. In light of the
exponential increase in opioid use, there has been growing interest in alternative therapy
for pain management, such as CBD, as potential treatment in order to decrease opioid
prescribing. CBD-based therapy seems to be effective in reducing chronic pain in cancer
and nonmalignant conditions (migraine, chronic pelvic pain, multiple sclerosis spasticity,
neuropathic pain) and can decrease opioid prescriptions among patients with long-term
conditions [105–107].

In particular, CBD has been proposed in several studies as a new treatment option
in patients with chronic neuropathic pain; however, the authors have reached divergent
conclusions on its efficacy [108,109].

In addition, CBD appears to alleviate symptoms of pain, sleep, and mood disorders in
rheumatology patients, but sound clinical evidence is lacking [110]. Recent observational
research has found an association between CBD use and improvements of pain symptoms
in patients with arthritis and reductions in other medications; however, evidence from
randomized controlled trials is lacking [111].

In very recent years CBD-based products have been suggested as a novel therapeutic
option in patients with endometriosis, in which classic pharmacological therapies can
often affect fertility; however, at the moment, there is a lack of conclusive evidence on the
benefits [112].

Preliminary studies show that CBD-based therapy have demonstrated evidence for
the management of migraines even though randomized, controlled trials are needed to
support its clinical use. Currently, CBD is considered an integrative treatment added to
traditional pharmacotherapy in patients with refractory migraines [113].

Finally, although CBD has only received FDA approval for Dravet Syndrome, Lennox
Syndrome, and multiple sclerosis, CBD appears to show promise in many neurological
conditions [114] such as trigeminal neuralgia, essential tremor, other forms of epilepsy, and
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neurodegenerative diseases such as Alzheimer’s [115] thanks to its neuroprotective and
anti-inflammatory properties.

4.2. CBD in Health and Fitness, and Sport

The opioid and cannabinoid systems also influence other aspects of health and fitness
with possible use in athletes due to physiological, biochemical, and psychological effects
potentially capable of ameliorating several aspects related to physical and cognitive exertion
in sports (see [17–19], for recent review). Table 2 summarizes the main features of opioids’
and cannabinoids’ effects, risks, and uses in sport.

Table 2. The key differences between opioids and cannabinoids.

Feature Opioids Cannabinoids

Main effects Pain relief Varies depending on the specific cannabinoid (THC can be
psychoactive, CBD is not)

Mechanism of action Binds to opioid receptors in the
central nervous system and body Binds to cannabinoid receptors in the brain and body

Risks Addiction, overdose, death Impaired coordination and reaction time, potential for dependence

Use in sports Pain management Pain management, inflammation, anxiety (though prohibited
by most anti-doping agencies)

By definition, “health is a state of complete physical, mental and social well-being and not
merely the absence of disease . . .. Fitness is an ability to execute daily functional activities with
optimal performance, endurance, and strength to manage minimalist of disease, fatigue, stress
and reduced sedentary behavior” [116]. Understanding how exercise modulates these sys-
tems can inform strategies for pain management and improved well-being [117]. Exercise
stimulates the release of endorphins and other endogenous opioids, which bind to opioid
receptors, modulating pain signals [118]. Exercise can reduce inflammation by decreasing
pro-inflammatory cytokines and increasing anti-inflammatory factors, thereby reducing
pain [119]. However, studies suggest some evidence that women may be more suscep-
tible to opioid addiction than men, although the reasons are not fully understood [120].
More research is needed to fully understand these differences and ensure optimal treat-
ment for everyone [121]. Muscle contractions and adaptations can alter muscle and joint
sensitivity, contributing to pain reduction [122]. Exercise activates descending pain in-
hibitory pathways in the brain, reducing pain perception and it can stimulate the release
of endocannabinoids, which modulate pain perception. Moreover, exercise is increasingly
recognized as a valuable adjunct to traditional pain management for conditions like lower
back pain, fibromyalgia, and osteoarthritis [123].

Opioids are primarily used to relieve pain, but they can also produce other effects,
such as drowsiness, constipation, and nausea. In sports, opioids are sometimes used to
treat pain from injuries. However, they can also be addictive and have serious side effects,
including overdose and death [124].

Cannabinoids act on cannabinoid receptors in the brain and body, and these receptors
are involved in a variety of physiological processes, including pain perception, mood,
appetite, and memory. In sports, some athletes use cannabinoids to treat pain, inflammation,
and anxiety. However, cannabinoids can also impair coordination and reaction time, which
can be a safety hazard in some sports [9].

Overall, the use of opioids and cannabinoids in sports is a complex issue and their
use in sports is controversial. Some people believe that opioids are a necessary tool
for pain management, while others believe that they are too risky. There are potential
benefits and risks associated with both substances. Exercise offers a promising and often
underutilized approach to pain management. By understanding the complex mechanisms
underlying exercise-induced analgesia and tailoring exercise interventions to individual
needs, healthcare providers can effectively incorporate physical activity into pain treatment
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plans [125]. More research is needed to determine the best way to manage pain and other
conditions in athletes. Educating individuals about the risks of opioid and cannabinoid
misuse is crucial for promoting healthy lifestyles.

Examining the potential benefits of combining exercise with other pain management
interventions, such as anabolic steroids, physical therapy, and psychological therapies [126],
there is some promise for CBD in sports and athletes are increasingly turning to CBD
for its potential benefits on physical activity [19]. A recent randomized trial investigated
the effects of 8 weeks of CBD and revealed a potential effect of CBD on power output
but no changes in health-related fitness, physical activity, cognitive health, psychological
wellbeing, and C-reactive protein [19]. In addition, consuming twice per day for 3.5 days a
formulation containing CBD, CBG, beta caryophyllene, branched-chain amino acids (i.e.,
valine, leucine, and isoleucine), and magnesium citrate supports recovery from delayed
onset muscle soreness on daily activities [127]. In another trial, CBD oil administered
in capsules after a bout of exercise-induced muscle damage had no beneficial effects on
perceived soreness and muscle function in untrained male subjects [128]. However, the
limited number of trials in the field, involving non-athlete populations, highlights a gap
between the marketing claims and the current scientific evidence for CBD and athletic
performance [129].

Musculoskeletal pain is the most frequent in a traumatic context and pain manage-
ment is a crucial issue for athletes who train and compete at the highest performance
levels [9,130]. Studies have shown that CBD, via the modulation of the ECS, may be
effective in reducing pain and inflammation caused by exercise [9]. Nevertheless, CBD
goes beyond the anti-inflammatory, immunomodulatory, and antinociceptive properties,
resulting as a promising modulator also for musculoskeletal regenerative medicine. In
fact, as recently reviewed by Marquez Azzini [131], pre-clinical studies have revealed
that CBD enhances cell proliferation and migration, especially in mesenchymal stem cells
and has the ability to reverse or attenuate the hallmark of chronic musculoskeletal disor-
ders. Interestingly, single CBD supplementation after intensive resistance training had
small but significant effects on muscle damage biomarkers (i.e., blood serum concentra-
tions of creatine kinase and myoglobin) and the recovery of squat performance after 72 h;
this randomized controlled trial suggested the potential pro-regenerative effects of CBD
supplementation after resistance training, but there is a need for further studies in the
field [132].

Many athletes struggle with getting enough sleep, which is essential for recovery.
CBD may help improve sleep quality by reducing anxiety and promoting relaxation. CBD
may help reduce muscle soreness and inflammation after exercise, which can help athletes
recover faster and get back to training sooner. In addition, CBD may help reduce anxiety
and stress, which can improve athletic performance, reducing anxiety and stress [133].
Studies have suggested higher doses of CBD (around 10 mg/kg) might be needed to see an
effect on exercise performance compared with the lower doses often marketed by some
manufacturers. Moreover, long-term studies are needed to understand the full effects of
daily CBD use on athletes and their performance. The evidence does not fully support
daily use for everyone.

The narcotics have been on the “prohibited list” from the World Anti-Doping Agency
(WADA) since the list was created in 1967, despite the WADA removing CBD from the
prohibited substance list in 2018. The WADA classifies cannabis, all phytocannabinoids,
and synthetics as doping, except for CBD. For the WADA, in competition, all natural and
synthetic cannabinoids are prohibited, e.g., in cannabis (hashish, marijuana) and cannabis
products, synthetic cannabinoids that mimic the effects of THC and natural and synthetic
THCs, with the exception of CBD [124,134]. Cannabis remains prohibited in competition
by WADA and many other professionals and international organizations [135]. However,
some sports organizations may still have their own rules regarding CBD use. Furthermore,
the legality of CBD for athletes can vary depending on the sport and the organization
governing the sport and athletes should always check with their governing body before
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using CBD products. While there is growing interest in CBD for fitness enthusiasts, the
research on its direct impact on performance and addiction is inconclusive.

There is no evidence about any direct performance-enhancing effects of cannabis or
CBD on athletes. Studies have not shown a clear benefit of CBD on enhancing physical
performance or metrics like VO2 max (maximal oxygen consumption). While CBD is
sometimes promoted for anxiety and stress relief, research on its impact on mental health
in athletes specifically is inconclusive.

CBD is available in a variety of forms, including oils, tinctures, capsules, creams, and
edibles. Athletes typically take CBD orally or apply it topically to sore muscles and joints.
It is generally well-tolerated, but it can cause side effects such as diarrhoea, fatigue, and
drowsiness [136]. It can also interact with certain medications. Athletes should be cautious
and consult with a doctor before starting CBD to understand potential benefits and risks.

While CBD shows promise for athletes, the effects of THC on performance are generally
negative. THC can negatively affect focus, reaction time, and decision-making, all of which
are crucial for athletes. Also, increased heart rate and blood pressure can be detrimental
during intense exercise. It is essential to approach cannabis use with caution and consider
the potential risks and benefits carefully. THC can impair motor skills, affecting balance and
agility, and impaired judgment and coordination can lead to accidents and injuries [137].

It is important to note that the research on CBD and sports is still in its early stages
of confirming the potential benefits of CBD for athletes. Rigorous scientific research is
essential to establish clear guidelines and recommendations. By investing in comprehensive
research, we can develop evidence-based strategies for using these substances, safely and
effectively, to enhance athletic performance and recovery.

5. Conclusions

The clinical use of opioids and cannabinoids as analgesic drugs for the treatment of
pain raises the issue of drug addiction, overtreatment, or substance use disorders [8–11]. In
the last years, pre-clinical studies on the “epigenetic modulation of pain” have provided
insights into the molecular mechanisms of pain, revealing that the modulation of the
epigenetic machinery by specific epigenetic activators or inhibitors may represent a possible
strategy in the modulation of injury-induced neuropathic pain. In this respect, epigenetic
mechanisms should be useful in the treatment of pain to increase the analgesic efficacy of
opioid- and cannabinoid-based drugs.

In parallel, CBD appears to be a promising therapeutic agent to complement traditional
medications for pain management. In light of its anti-inflammatory and neuroprotective
potential, it also appears useful in the treatment of other neurological, psychiatric, and
immunological conditions [138]. However, it must be considered that in clinical practice,
it is rather difficult to evaluate the effect of CBD by separating it from the components
contained in medical preparations, such as THC, flavonoids, and terpenes [139].

Similarly, the use of opioids and cannabinoids in health, fitness, and sports is a
complex and controversial issue with potential benefits and risks associated with both
substances. Nevertheless, there is some promise for the use of CBD in sports and athletes
are consequently increasingly turning to CBD for its potential benefits on physical activity.
More research is needed to determine the best way to manage pain and other conditions in
athletes. Therefore, it would be necessary to conduct randomized and controlled studies
that investigate the effect of pure CBD in order to better define its efficacy and safety to
draw up guidelines that support the clinician in the management of the different conditions.
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