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IMPORTANCE Animal studies have shown that the adolescent brain is sensitive to disruptions
in endocannabinoid signaling, resulting in altered neurodevelopment and lasting behavioral
effects. However, few studies have investigated ties between cannabis use and adolescent
brain development in humans.

OBJECTIVE To examine the degree to which magnetic resonance (MR) imaging–assessed
cerebral cortical thickness development is associated with cannabis use in a longitudinal
sample of adolescents.

DESIGN, SETTING, AND PARTICIPANTS Data were obtained from the community-based
IMAGEN cohort study, conducted across 8 European sites. Baseline data used in the present
study were acquired from March 1, 2008, to December 31, 2011, and follow-up data were
acquired from January 1, 2013, to December 31, 2016. A total of 799 IMAGEN participants
were identified who reported being cannabis naive at study baseline and had behavioral
and neuroimaging data available at baseline and 5-year follow-up. Statistical analysis was
performed from October 1, 2019, to August 31, 2020.

MAIN OUTCOMES AND MEASURES Cannabis use was assessed at baseline and 5-year follow-up
with the European School Survey Project on Alcohol and Other Drugs. Anatomical MR images
were acquired with a 3-dimensional T1-weighted magnetization prepared gradient echo
sequence. Quality-controlled native MR images were processed through the CIVET pipeline,
version 2.1.0.

RESULTS The study evaluated 1598 MR images from 799 participants (450 female participants
[56.3%]; mean [SD] age, 14.4 [0.4] years at baseline and 19.0 [0.7] years at follow-up). At 5-year
follow-up, cannabis use (from 0 to >40 uses) was negatively associated with thickness in left
prefrontal (peak: t785 = –4.87, cluster size = 1558 vertices; P = 1.10 × 10−6, random field theory
cluster corrected) and right prefrontal (peak: t785 = –4.27, cluster size = 1551 vertices;
P = 2.81 × 10−5, random field theory cluster corrected) cortices. There were no significant
associations between lifetime cannabis use at 5-year follow-up and baseline cortical thickness,
suggesting that the observed neuroanatomical differences did not precede initiation of
cannabis use. Longitudinal analysis revealed that age-related cortical thinning was qualified
by cannabis use in a dose-dependent fashion such that greater use, from baseline to follow-up,
was associated with increased thinning in left prefrontal (peak: t815.27 = –4.24, cluster
size = 3643 vertices; P = 2.28 × 10−8, random field theory cluster corrected) and right
prefrontal (peak: t813.30 = –4.71, cluster size = 2675 vertices; P = 3.72 × 10−8, random field
theory cluster corrected) cortices. The spatial pattern of cannabis-related thinning was
associated with age-related thinning in this sample (r = 0.540; P < .001), and a positron
emission tomography–assessed cannabinoid 1 receptor–binding map derived from a separate
sample of participants (r = −0.189; P < .001). Analysis revealed that thinning in right prefrontal
cortices, from baseline to follow-up, was associated with attentional impulsiveness at follow-up.

CONCLUSIONS AND RELEVANCE Results suggest that cannabis use during adolescence is
associated with altered neurodevelopment, particularly in cortices rich in cannabinoid 1
receptors and undergoing the greatest age-related thickness change in middle to late
adolescence.

JAMA Psychiatry. 2021;78(9):1031-1040. doi:10.1001/jamapsychiatry.2021.1258
Published online June 16, 2021.

Multimedia

Supplemental content

Author Affiliations: Author
affiliations are listed at the end of this
article.

Group Information: The IMAGEN
Consortium members are listed at
the end of this article.

Corresponding Author: Matthew D.
Albaugh, PhD, Department of
Psychiatry, University of Vermont
Larner College of Medicine,
University Health Center campus,
One S Prospect Street, Burlington, VT
05401 (malbaugh@uvm.edu).

Research

JAMA Psychiatry | Original Investigation

(Reprinted) 1031

Downloaded from jamanetwork.com by guest on 02/21/2025

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2021.1258?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2021.1258
https://jamanetwork.com/journals/psy/fullarticle/10.1001/jamapsychiatry.2021.1258?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2021.1258
https://jamanetwork.com/journals/psy/fullarticle/10.1001/jamapsychiatry.2021.1258?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2021.1258
mailto:malbaugh@uvm.edu


C annabis is a commonly used psychoactive drug, par-
ticularly among adolescents and young adults. Rela-
tive to the general population, past-year prevalence

rates of cannabis use are greatest among teenagers, and more
than one-third of 12th graders in the United States report using
cannabis in the past year.1,2 Seventy-eight percent of first-
time cannabis users are between the ages of 12 and 20 years.3

These prevalence rates raise concern as cannabis use during
adolescence has been linked to enduring impairments of ex-
ecutive functioning and impulse control.4 Such longitudinal
associations appear specific to cannabis use and indepen-
dent of concomitant alcohol use; however, the neurobiologi-
cal mechanisms that might mediate a long-term behavioral as-
sociation with cannabis use remain unclear.4 The potential
association of cannabis use with adolescent development rep-
resents an increasingly relevant public health issue, particu-
larly given evidence of increased problematic cannabis use
among adolescents in areas where recreational cannabis
use has been legalized.5

The transition from late adolescence to early adulthood is
characterized by significant structural change in the brain, most
notably in areas of the cerebral cortex that are known to ex-
hibit protracted developmental trajectories and undergo rela-
tively late myelination.6-9 Extant research studies suggest that
changes in endocannabinoid signaling can have a significant
association with aspects of mammalian brain development.10,11

Evidence further indicates that the adolescent brain may be
particularly sensitive to disruptions in normative fluctua-
tions in endocannabinoid signaling, associated with altered
neurodevelopment and behavior.12-15 Despite such findings in
the animal literature, few longitudinal neuroimaging studies
have examined putative ties between cannabis use and ado-
lescent brain development, to our knowledge.

Here, we examined the association between cannabis use
and cerebral cortical development in a longitudinal, commu-
nity-based sample of adolescents. From the larger IMAGEN
sample, we identified participants who reported being canna-
bis naive at study baseline and had neuroimaging data avail-
able at study baseline and 5-year follow-up. First, in a series
of cross-sectional analyses, we examined the extent to which
lifetime cannabis use was associated with cortical thickness
at 5-year follow-up (approximately 19 years of age). To test the
temporality of this association, we then examined the extent
to which cortical thickness at age 14 years was associated with
lifetime cannabis use at 5-year follow-up. In our primary lon-
gitudinal analysis, a linear mixed-effects model (LMM) was
implemented to test the degree to which initiation of canna-
bis use was associated with age-related cortical thickness
change (from ages 14 to 19 years). Follow-up analyses were con-
ducted to test the extent to which cannabis-related cortical
thinning was associated with aspects of impulsive behavior.
We also tested the association between the longitudinally de-
rived map of cannabis-related cortical thinning and positron
emission tomography (PET)–derived cannabinoid 1 (CB1) re-
ceptor availability (collected from an independent sample of
young adults) with the hypothesis that areas demonstrating
cannabis-related thinning would exhibit, on average, rela-
tively greater CB1 receptor availability. We further hypoth-

esized that cannabis-related thinning would be most evident
in cortical regions undergoing the greatest structural change
during the developmental window studied.

Methods
Sample
Neuroimaging and behavioral data were obtained from the
IMAGEN study,16 conducted across 8 European sites, which in-
cludes 2223 adolescents recruited from schools at approxi-
mately 14 years of age (range, 12.9-15.7 years). Baseline data used
in the present cohort study were acquired from March 1, 2008,
to December 31, 2011, and follow-up data were acquired from
January 1, 2013, to December 31, 2016. Local ethics research
committees approved the study at each site (London, En-
gland: Psychiatry, Nursing and Midwifery Research Ethics
Subcommittee, Waterloo Campus, King’s College London;
Nottingham, England: University of Nottingham Medical School
Ethics Committee; Mannheim, Germany: Medizinische Fakul-
taet Mannheim, Ruprecht Karl Universitaet Heidelberg
and Ethik-Kommission II an der Fakultaet fuer Kliniksche
Medizin Mannheim; Dresden, Germany: Ethikkommission
der Medizinischen Fakultaet Carl Gustav Carus, TU Dresden
Medizinische Fakultaet; Hamburg, Germany: Ethics Board,
Hamburg Chamber of Physicians; Paris, France: CPP IDF VII
(Comité de protection des personnes Ile de France), ID RCB:
2007-A00778-45 September 24, 2007; Dublin, Ireland: TCD
School of Psychology REC; and Berlin, Germany: Ethics Com-
mittee of the Faculty of Psychology). Written consent was ob-
tained from the adolescent’s parent or guardian, and verbal
assent was obtained from the adolescent. We identified
799 participants who reported being cannabis naive on the
European School Survey Project on Alcohol and Other Drugs
(ESPAD)17 at study baseline and had behavioral and quality-
controlled neuroimaging data available at study baseline and
5-year follow-up.

Substance Use Measures
Substance use was assessed at baseline and 5-year follow-up
with ESPAD,17 a self-report questionnaire that measures use

Key Points
Question To what extent is cannabis use associated with
magnetic resonance imaging–measured cerebral cortical thickness
development during adolescence?

Findings In this cohort study, linear mixed-effects model analysis
using 1598 magnetic resonance images from 799 participants
revealed that cannabis use was associated with accelerated
age-related cortical thinning from 14 to 19 years of age in
predominantly prefrontal regions. The spatial pattern of
cannabis-related cortical thinning was significantly associated with
a positron emission tomography–assessed map of cannabinoid 1
receptor availability.

Meaning Results suggest that cannabis use during middle to late
adolescence may be associated with altered cerebral cortical
development, particularly in regions rich in cannabinoid 1
receptors.
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of alcohol, nicotine, and cannabis as well as other sub-
stances. Participants indicated how frequently they had used
each of the substances in their lifetime, in the past 12 months,
in the past 30 days, and in the past 7 days using a 7-point scale
(where 0 indicates never; 1, 1-2 times; 2, 3-5 times; 3, 6-9 times;
4, 10-19 times; 5, 20-39 times; and 6, ≥40 times).

The Alcohol Use Disorders Identification Test (AUDIT) is
a 10-item screening tool created by the World Health Organi-
zation that assesses alcohol consumption, drinking behav-
iors, and alcohol-associated problems.18 AUDIT was adminis-
tered to youths at baseline and follow-up. The AUDIT Alcohol
Consumption scale (AUDIT-C) was used in the present study
and is composed of items on AUDIT that explicitly assess the
amount and frequency of alcohol consumption.19,20

Impulsivity Measures
Given prior research suggesting that cannabis use has associa-
tions with impulse control, we chose to examine associations
between cannabis-related thinning and 3 domains of impul-
siveness (attentional, nonplanning, and motor) assessed on the
Barratt Impulsiveness Scale,21,22 a 30-item self-report question-
naire that was administered at 5-year follow-up in IMAGEN.

Cortical Thickness
Anatomical magnetic resonance (MR) images were acquired
with a 3-dimensional T1-weighted magnetization prepared gra-
dient echo sequence based on the Alzheimer’s Disease Neu-
roimaging Initiative protocol.23 Quality-controlled native MR
images were processed through the CIVET pipeline, version
2.1.0 (Montreal Neurological Institute) using the CBRAIN
platform (Montreal Neurological Institute)24 and Compute
Canada25 (eAppendix 1 in the Supplement).

CB1 Receptor Availability
To test for possible associations between the spatial distribu-
tion of cannabis-related cortical thinning and a receptor for the
endocannabinoid system, we used a map of CB1 receptor avail-
ability generated from healthy control participants in a previ-
ously published study.26 Maps of CB1 receptor availability were
generated using PET and the reversible ligand [11C]OMAR in
21 men aged 18 to 35 years. The 21 individual participant maps
were averaged to provide an estimate of CB1 receptor avail-
ability at each voxel. This mean PET volume was subse-
quently projected to a cortical surface model in the Montreal
Neurological Institute International Consortium for Brain
Mapping space.

Statistical Analysis
Statistical analysis was performed from October 1, 2019,
to August 31, 2020. Cortical thickness analysis was imple-
mented using SurfStat, a toolbox created for MATLAB
(The MathWorks Inc).27 In cross-sectional analyses, local cor-
tical thickness was regressed on lifetime cannabis use. Lon-
gitudinal cortical thickness analysis was conducted using
LMMs.8,28-33 In LMMs, participant ID was entered as a ran-
dom effect to account for within-individual dependence.
Change in lifetime cannabis use (from baseline to 5-year follow-
up) was included as a time-invariant covariate. Age, total brain

volume, sex, handedness, site, and consumption score on
AUDIT were controlled for in all analyses. To account for mul-
tiple comparisons, random field theory correction was ap-
plied to the cortical surface (eAppendix 2 in the Supplement).34

A random field theory cluster–corrected significance thresh-
old of P < .05 was used for all cortical thickness analyses.

Results
Demographics and Cannabis Use
The study evaluated 1598 MR images from 799 participants
(450 female participants [56.3%]; mean [SD] age at baseline,
14.4 [0.4] years). Demographic information is summarized
in the Table and eTable 1 in the Supplement. Demographic in-
formation regarding excluded IMAGEN participants can be
found in eTable 2 in the Supplement. At follow-up, lifetime can-
nabis use ranged from 0 to more than 40 uses, with 208 par-
ticipants reporting 1 to 9 uses and 161 participants reporting
10 to more than 40 uses. Distribution of lifetime cannabis use
at 5-year follow-up is shown in eFigure 1 in the Supplement.
Descriptive statistics are provided for ESPAD substance use
items and AUDIT-C in eTables 3-6 in the Supplement. For fur-
ther details regarding demographic variables, see eAppendix
3 in the Supplement.

Cannabis Use and Cortical Thickness
Cross-Sectional
At 5-year follow-up, there was evidence of a dose-dependent
association between lifetime cannabis use and cortical thick-
ness (n = 799), with significant negative associations be-
tween lifetime cannabis use and thickness in left prefrontal
(peak: t785 = –4.87, cluster size = 1558 vertices; P = 1.10 × 10−6,
random field theory cluster corrected) and right prefrontal
(peak: t785 = –4.27, cluster size = 1551 vertices; P = 2.81 × 10−5,
random field theory cluster corrected) cortices (Figure 1). There
were no significant associations between baseline cortical
thickness and follow-up lifetime cannabis use, suggesting that
the neuroanatomical differences observed at 5-year fol-
low-up did not precede initiation of cannabis use. Even when
reducing the statistical threshold to P ≤ .005 uncorrected, only

Table. Summary Statistics for Demographic Variables

Characteristic
Total, mean (SD)
(N = 799)

Age, y

Baseline 14.4 (0.4)

Follow-up 19.0 (0.7)

Sex, No. (%)

Female 450 (56.3)

Male 349 (43.7)

Baseline

Socioeconomic statusa 18.2 (3.7)

Verbal IQ 112.6 (13.0)

Performance IQ 109.6 (13.6)

a Details for the socioeconomic score can be found in eAppendix 1 of
the Supplement.
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several negative associations were revealed—and these areas
were well outside of those showing the 5-year follow-up as-
sociations (eFigure 2 in the Supplement).

Longitudinal
In line with the cross-sectional results, longitudinal LMM analy-
sis (799 participants and 1598 MR images) revealed a signifi-
cant time × cannabis interaction such that cannabis use was
associated with accelerated age-related cortical thinning in left
prefrontal (peak: t815.27 = –4.24, cluster size = 3643 vertices;

P = 2.28 × 10−8, random field theory cluster corrected) and right
prefrontal (peak: t813.30 = –4.71, cluster size = 2675 vertices;
P = 3.72 × 10−8, random field theory cluster corrected) corti-
ces (Figure 2 and Figure 3; eFigure 3 in the Supplement). Re-
sults were not meaningfully altered when controlling for base-
line age and length of time between study visits. Further, the
unthresholded t statistic map for the time × cannabis interac-
tion was significantly associated with a PET-derived map of
CB1 receptor availability (collected on a separate sample of 21
healthy adults) (r = −0.189; P < .001), indicating that cortical

Figure 1. Cross-Sectional Results

P value cluster P value vertex
0.025.025 .050.05

P values

Brain areas where local cortical
thickness is negatively associated
with the dimensional measure of
lifetime cannabis use at 5-year
follow-up (N = 799). Random field
theory was used to correct for
multiple comparisons over the entire
cortical mantle. The figure is shown
at P � .05, random field theory
corrected. Blue areas are significant
at the cluster level, and red
corresponds to areas significant at
the vertex level. Measures were
controlled for age, total brain volume,
sex, handedness, Alcohol Use
Disorders Identification Test Alcohol
Consumption score, and site.

Figure 2. Longitudinal Linear Mixed-Effects Model Results

P value cluster P value vertex
0.025.025.05

P values

.050

Brain areas where local cortical
thickness is associated with the
time × cannabis interaction in a linear
mixed-effects model analysis,
controlling for the main effects of
time point, lifetime cannabis use,
total brain volume, sex, handedness,
Alcohol Use Disorders Identification
Test Alcohol Consumption score, and
site (N = 799; 1598 magnetic
resonance imaging scans). The figure
is shown at P � .05 with a
whole-brain random field theory
correction. Blue shades correspond
to areas significant at the cluster level
and red shades to areas significant at
the vertex level.
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areas in which age-related thinning was qualified by canna-
bis partially overlapped with areas showing a higher density
of CB1 receptors as indexed by [11C]OMAR binding (Figure 4).

Given that PET data were collected on an all-male sample,
we reran our LMM using male participants only (n = 349 and
698 MR images). The t map for the time × cannabis interac-
tion in male participants was similar to results obtained when
male and female participants were analyzed together. Fur-
thermore, the unthresholded t statistic map for the time × can-
nabis interaction in male participants was significantly asso-
ciated with the PET-derived map of CB1 receptor availability
(r = −0.313; P < .001).

Age and Cortical Thickness
Next, longitudinal LMM analysis was implemented to charac-
terize the association between age and cortical thickness in the
sample of 799 participants who were cannabis naive at base-
line. Consistent with prior reports of cortical thickness devel-
opment, there was a significant main association of time point
with cortical thickness, with most areas of the cortex evidenc-

ing age-related thinning.7,8 The spatial pattern of cannabis-
related cortical thinning was correlated with the unthresh-
olded t statistic map for the association with time, indicating
that, on average, cannabis-related thinning was greater in
cortical regions evidencing the most significant age-related
thinning in this sample (r = 0.540; P < .001) (Figure 4).

Additional Covariates, Moderators,
and Cannabis Use Variables
Across all analyses, controlling for socioeconomic status, ver-
bal IQ, and performance IQ did not meaningfully alter re-
sults. In cross-sectional and longitudinal analyses, we exam-
ined sex as a potential moderator in the association between
cortical thickness and cannabis use. In cross-sectional analy-
ses, there was no significant sex × cannabis interaction on cor-
tical thickness. Similarly, in longitudinal analysis, a time × can-
nabis × sex interaction was not significantly associated with
cortical thickness, indicating that the association between age-
related thinning and cannabis use did not statistically differ
between sexes. Nearly identical results were obtained when

Figure 3. Magnetic Resonance Imaging–Assessed Cortical Thinning at Varying Levels of Lifetime Cannabis Use
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A, Right dorsomedial prefrontal cluster from linear mixed-effects analysis.
B, Left dorsomedial prefrontal cluster from linear mixed-effects analysis. The
bar graphs depict within-individual symmetrized percentage change (ie, change
in cortical thickness, in millimeters per year, with respect to the mean cortical
thickness across both time points) for each cluster at varying levels of lifetime

cannabis use (at 5-year follow-up). Error bars represent 95% confidence
intervals. Brain figures shown at P � .05 with a whole-brain random field
theory correction. Blue shades correspond to areas significant at the cluster
level, and orange shades to areas significant at the vertex level.
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all analyses were rerun using a binary cannabis use variable
(moderate and heavy users vs cannabis naive) with a between-
group design. See eAppendix 4, eFigure 4, and eFigure 5 in the
Supplement for details. Although alcohol consumption was
controlled for in the above analyses, co-occurring tobacco use
represents an additional potential confounder. At 5-year follow-
up, lifetime tobacco use was correlated with lifetime canna-
bis use on ESPAD (r = 0.573; P < .001). However, rerunning the
longitudinal analysis and including lifetime tobacco use as
a covariate resulted in largely consistent findings (eFigure 6
in the Supplement).

Cannabis-Related Thinning and Impulsiveness
Cannabis-related cortical thinning in the right dorsomedial
prefrontal cortex accounted for unique variance in atten-
tional impulsiveness at 5-year follow-up while controlling
for sex, site, baseline age, baseline brain volume, baseline
pubertal development, verbal IQ , and performance IQ
(b = −0.119; P = .003). Thus, accelerated thinning in the right
dorsomedial prefrontal cortex was associated with the tran-
sition to cannabis use as well as greater attentional impul-
siveness at 5-year follow-up. This association held even
when controlling for baseline parent-reported and self-
reported attention-deficit/hyperactivity disorder symptoms
(eAppendix 5 in the Supplement). Exploratory follow-up
analyses revealed no significant associations between
cannabis-associated thinning and other psychopathologic
and neurocognitive measures (eAppendix 6 and eAppendix 7
in the Supplement).

Discussion

To our knowledge, the present investigation represents the larg-
est longitudinal neuroimaging study of cannabis use to date.
Results suggest that cannabis use during middle to late ado-
lescence may be associated with altered cortical develop-
ment, particularly in prefrontal regions rich in CB1 receptors
and exhibiting protracted maturational trajectories. Specifi-
cally, we found evidence of a dose-dependent association be-
tween cannabis use from baseline to 5-year follow-up and ac-
celerated cortical thinning during that same period, primarily
in prefrontal regions. Baseline cortical thickness was not as-
sociated with lifetime cannabis use at 5-year follow-up, sug-
gesting that the observed neuroanatomical associations with
lifetime cannabis use were not associated with preexisting
differences in brain structure. Results from longitudinal analy-
sis indicated that age-related cortical thinning was associ-
ated with cannabis use in a dose-dependent fashion such that
greater use from baseline to 5-year follow-up was associated
with increased rates of cortical thinning in predominantly pre-
frontal regions during that same period. Our results are cor-
roborated by convergence with PET mapping of CB1 receptor
availability; cortical areas in which the transition to cannabis
use was associated with accelerated age-related thinning were,
on average, cortical regions with increased CB1 receptor avail-
ability. Across analyses, we controlled for co-occurring alco-
hol consumption and confirmed that the associations with
cannabis use persisted when covarying for nicotine use. Follow-

Figure 4. Topographical Overlap Between Age-Related Thinning, Cannabis Effect,
and Cannabinoid 1 (CB1) Receptor Availability
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r = –0.19r = 0.54

Topographical overlap between
age-related cortical thinning in the
sample (n = 799), areas in which
age-related thinning was qualified by
cannabis use, and positron emission
tomography–assessed CB1 receptor
availability (collected from a separate
sample of 21 healthy adults). The
r values correspond to Pearson
correlation coefficients between
unthresholded vertex-level surface
maps. Please note that thresholds
have been lowered for visualization
purposes. Regional [11C]OMAR
volume distribution is shown at >1.4,
age-related thinning map is shown at
t < −15, and cannabis-related thinning
map is shown at t < −2.
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up analyses indicate a potential consequence of cannabis-related
cortical thinning, as cortical thinning in the right dorsomedial
prefrontal cortex from baseline to 5-year follow-up was asso-
ciated with attentional impulsiveness at 5-year follow-up.

Numerous cross-sectional studies have tested for brain
structural correlates of adolescent cannabis use, although find-
ings have been inconsistent.35-42 In general, when comparing
adolescent cannabis users with nonusers, cross-sectional stud-
ies have reported evidence of reduced volume and surface area
across frontal and parietal areas as well as reduced cortical
thickness in frontal regions.35,38,43 Other studies have found
evidence of increased volume and/or thickness in temporal
and cerebellar regions in adolescent cannabis users relative to
peers who did not use cannabis.37,41,42 However, some prior
studies have failed to reveal structural differences between
adolescent cannabis users and controls who did not use
cannabis.39,40 Few longitudinal neuroimaging studies have at-
tempted to test for associations between change in cannabis
use and change in brain structure. In a study of 30 adoles-
cents with heavy marijuana use and concomitant alcohol use,
Jacobus et al44 found evidence of attenuated age-related thin-
ning in comparison with controls, predominantly in frontal and
parietal regions such that greater cumulative marijuana use was
associated with increased thickness estimates at 3-year follow-
up. However, participants in this prior study ranged from 16
to 19 years of age at baseline, spanning a broad neurodevel-
opmental window. In a smaller sample of IMAGEN partici-
pants, French et al45 reported evidence of cortical thickness
reductions associated with cannabis use; however, cannabis-
related cortical thickness reductions were found in males only.

It has long been postulated that ongoing neurodevelop-
mental processes during adolescence may impart heightened
vulnerability to cannabis exposure and increase the likeli-
hood of long-term associations with cognition and behavior.
Many animal studies have reported enduring effects of
adolescent exposure to tetrahydrocannabinol (THC), the
primary psychoactive substance in cannabis. Specifically, ado-
lescent exposure to THC has been shown to decrease social
behavior in adult rats46,47 as well as alter motivational
processes.48 Rodent and primate studies have also demon-
strated that adolescent exposure to THC results in working
memory deficits in adulthood.49-52 Several rodent studies have
also found that adolescent THC exposure results in lasting
alterations in glutamatergic and γ-aminobutyric acid–ergic
functioning.53,54 In humans, adolescent-onset cannabis us-
ers exhibit greater use-associated problems in adulthood rela-
tive to late-onset cannabis users.55,56 Findings from the pre-
sent study may help to elucidate heightened vulnerability to
the effects of cannabis use among adolescents. We found that
the statistical map of age-related cortical change was signifi-
cantly correlated with statistical maps of the time × cannabis
interaction on cortical thickness as well as the main associa-
tion of cannabis use with cortical thickness at 5-year follow-
up. Taken together, these results suggest that, on average, can-
nabis use tended to qualify cortical thickness change within
areas already undergoing the greatest degree of age-related
change (from baseline to 5-year follow-up). This finding pro-
vides support for the association of cannabis use with ongo-

ing maturational processes in the brain and a possible expla-
nation for the heightened vulnerability to the cognitive
outcomes of cannabis use among adolescents. More impor-
tant, our imaging findings are consistent with recent animal
research on adolescent THC exposure and prefrontal cortical
maturation. Miller et al15 examined the association of ado-
lescent THC exposure with prefrontal cortical maturation
using a rat model. Researchers injected male rats with THC
during the period of their adolescence, spanning 4 to 7
weeks of age. They found that adolescent THC exposure
resulted in distinct proximate and long-term alterations of
dendritic architecture. Specifically, THC exposure disrupted
normal neurodevelopmental processes by inducing prema-
ture pruning of dendritic spines and atrophy of dendritic
arbors in early adulthood. We hypothesize that the MR
imaging (MRI)–assessed cannabis-related thinning revealed
in our human study is underpinned by the same neurobio-
logical phenomenon.

Strengths and Limitations
Our study possesses several strengths that may help to ex-
plain apparent discrepancies when comparing our findings
with those of previous longitudinal imaging studies of canna-
bis use. First, all participants in the present study were report-
edly cannabis naive at baseline, and, for those who transi-
tioned to cannabis use, exposure occurred during the same
developmental window—a critical detail given that the asso-
ciations of cannabis exposure may be largely dependent on
neurodevelopmental stage. Second, the number of partici-
pants in the present study offers increased statistical power
to detect relatively subtle brain changes.

Several limitations of the present study should also be ad-
dressed. The PET data used in this study were collected on
a separate sample of young adults, not the 799 youths who un-
derwent longitudinal neuroimaging. Given the invasive na-
ture of PET imaging and its associated risks, it is not ethical to
collect PET data on minors. We cannot state definitively that,
in our sample of 799 participants, the areas exhibiting cannabis-
related thinning in longitudinal MRI analysis were, in fact, high
in CB1 receptor availability. Our present findings are also lim-
ited by the self-report nature of our cannabis use measure. As
with any self-report measure, it is possible that participants
were not honest regarding their cannabis use or that their es-
timates of past cannabis use were inaccurate. We also did not
have information pertaining to the types of cannabis prod-
ucts used (eg, cannabis oil concentrates and other formula-
tions). As in other longitudinal MRI studies, there is uncer-
tainty with regard to the exact neurobiological mechanisms
associated with MRI-assessed cortical thinning. Research sug-
gests that MRI-assessed, age-related cortical thinning may
reflect increased myelination of lower cortical layers as op-
posed to synaptic pruning and/or neuronal cell loss.57 Natu
et al57 found good correspondence between MRI-assessed cor-
tical thickness and histologic measurements of cortical thick-
ness among young adults. This latter finding is critical given
that we detected cannabis-related differences in cortical thick-
ness at age 19 years and not at 14 years, suggesting that our
MRI-assessed cortical thickness findings are associated with
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reduced cortical gray matter rather than increased myelina-
tion. The present study focused on cortical thickness devel-
opment and did not examine potential cannabis-related out-
comes within subcortical structures. Future studies may
benefit from conducting similar analyses on subcortical re-
gions, particularly those rich in CB1 receptors. Most impor-
tant, given the observational nature of the present study, it is
possible that the apparent association between cortical thin-
ning and cannabis use reflects preexisting trajectories of brain
maturation that were not caused by cannabis use. We cannot
rule out the possibility that preexisting cognitive and/or be-
havioral differences are associated with neurodevelopmen-
tal trajectories from adolescence to early adulthood and that
cannabis use is not causally related to cerebral cortical thick-
ness development. Although such an alternative explanation
is possible, several observations from the present study are
worth reiterating. First, there was a dose-dependent associa-
tion at 5-year follow-up between lifetime cannabis use and cor-
tical thickness. Second, there were no significant associa-
tions between baseline cortical thickness and lifetime cannabis
use at 5-year follow-up. Given evidence of first-order mono-

tonic thinning for much of the cerebral cortex during child-
hood and adolescence,8,33 it would seem unlikely that differ-
ing maturational trajectories, if present, would not have been
detectable at baseline. Third, the spatial pattern of cannabis-
related thinning was significantly associated with a PET-
derived map of CB1 receptor availability.

Conclusions
To our knowledge, the present investigation represents the larg-
est longitudinal neuroimaging study of adolescent cannabis
use to date. We report evidence of an association between ado-
lescent cannabis use and altered cortical thickness develop-
ment in a longitudinal sample of youths. The spatial pattern
of cannabis-related thinning was associated with a PET-
derived map of CB1 receptor availability as well as a map of age-
related thickness change. The findings underscore the impor-
tance of further longitudinal studies of adolescent cannabis
use, particularly given increasing trends in the legalization of
recreational cannabis use.
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